Invariants
This isogeny class is not simple,
primitive,
not ordinary,
and supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is supersingular.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$2304$ |
$5308416$ |
$10779422976$ |
$23768199069696$ |
$52599132694520064$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$48$ |
$2398$ |
$103824$ |
$4870846$ |
$229345008$ |
$10779630622$ |
$506623120464$ |
$23811267143038$ |
$1119130473102768$ |
$52599133153210078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 100 curves (of which all are hyperelliptic):
- $y^2=2 x^6+9 x^5+14 x^4+36 x^3+42 x^2+34 x+7$
- $y^2=10 x^6+45 x^5+23 x^4+39 x^3+22 x^2+29 x+35$
- $y^2=15 x^6+5 x^5+25 x^4+10 x^3+25 x^2+5 x+15$
- $y^2=28 x^6+25 x^5+31 x^4+3 x^3+31 x^2+25 x+28$
- $y^2=x^6+x^3+24$
- $y^2=5 x^6+5 x^3+26$
- $y^2=46 x^6+14 x^5+31 x^4+7 x^3+40 x^2+17 x+45$
- $y^2=42 x^6+23 x^5+14 x^4+35 x^3+12 x^2+38 x+37$
- $y^2=9 x^6+10 x^4+10 x^2+9$
- $y^2=45 x^6+3 x^4+3 x^2+45$
- $y^2=9 x^6+3 x^4+15 x^2+44$
- $y^2=40 x^6+27 x^4+41 x^2+18$
- $y^2=15 x^6+26 x^5+22 x^4+33 x^3+15 x^2+15 x+40$
- $y^2=28 x^6+36 x^5+16 x^4+24 x^3+28 x^2+28 x+12$
- $y^2=25 x^6+15 x^5+24 x^4+30 x^3+24 x^2+15 x+25$
- $y^2=31 x^6+28 x^5+26 x^4+9 x^3+26 x^2+28 x+31$
- $y^2=x^6+x^3+3$
- $y^2=5 x^6+5 x^3+15$
- $y^2=35 x^6+18 x^5+45 x^4+4 x^3+10 x^2+27 x+43$
- $y^2=34 x^6+43 x^5+37 x^4+20 x^3+3 x^2+41 x+27$
- and 80 more
- $y^2=41 x^6+32 x^5+15 x^4+29 x^3+13 x^2+42 x+39$
- $y^2=17 x^6+19 x^5+28 x^4+4 x^3+18 x^2+22 x+7$
- $y^2=40 x^6+11 x^5+16 x^4+23 x^3+16 x^2+11 x+40$
- $y^2=12 x^6+8 x^5+33 x^4+21 x^3+33 x^2+8 x+12$
- $y^2=22 x^6+27 x^5+25 x^4+19 x^3+2 x^2+x+33$
- $y^2=16 x^6+41 x^5+31 x^4+x^3+10 x^2+5 x+24$
- $y^2=29 x^6+5 x^5+24 x^4+29 x^3+24 x^2+5 x+29$
- $y^2=4 x^6+25 x^5+26 x^4+4 x^3+26 x^2+25 x+4$
- $y^2=41 x^6+6 x^5+20 x^4+33 x^3+22 x^2+11 x+16$
- $y^2=17 x^6+30 x^5+6 x^4+24 x^3+16 x^2+8 x+33$
- $y^2=7 x^5+32 x^4+43 x^3+2 x^2+16 x$
- $y^2=35 x^5+19 x^4+27 x^3+10 x^2+33 x$
- $y^2=31 x^6+11 x^5+16 x^4+32 x^3+16 x^2+11 x+31$
- $y^2=14 x^6+8 x^5+33 x^4+19 x^3+33 x^2+8 x+14$
- $y^2=x^6+46$
- $y^2=x^6+16$
- $y^2=5 x^6+33$
- $y^2=28 x^5+3 x^3+3 x$
- $y^2=35 x^6+30 x^5+44 x^4+8 x^3+40 x^2+38 x+46$
- $y^2=34 x^6+9 x^5+32 x^4+40 x^3+12 x^2+2 x+42$
- $y^2=7 x^6+44 x^5+11 x^4+19 x^3+11 x^2+44 x+7$
- $y^2=35 x^6+32 x^5+8 x^4+x^3+8 x^2+32 x+35$
- $y^2=35 x^6+10 x^5+46 x^4+35 x^3+44 x^2+43 x+5$
- $y^2=34 x^6+3 x^5+42 x^4+34 x^3+32 x^2+27 x+25$
- $y^2=33 x^6+29 x^5+3 x^4+17 x^3+3 x^2+29 x+33$
- $y^2=24 x^6+4 x^5+15 x^4+38 x^3+15 x^2+4 x+24$
- $y^2=20 x^5+30 x^4+42 x^3+46 x^2+23 x$
- $y^2=6 x^5+9 x^4+22 x^3+42 x^2+21 x$
- $y^2=11 x^6+43 x^5+45 x^4+15 x^3+45 x^2+43 x+11$
- $y^2=8 x^6+27 x^5+37 x^4+28 x^3+37 x^2+27 x+8$
- $y^2=7 x^6+36 x^5+5 x^4+13 x^3+38 x^2+17 x+34$
- $y^2=35 x^6+39 x^5+25 x^4+18 x^3+2 x^2+38 x+29$
- $y^2=18 x^5+7 x^4+5 x^3+7 x^2+18 x$
- $y^2=43 x^5+35 x^4+25 x^3+35 x^2+43 x$
- $y^2=x^6+x^3+34$
- $y^2=5 x^6+5 x^3+29$
- $y^2=46 x^6+20 x^5+46 x^4+19 x^3+33 x^2+19 x+29$
- $y^2=42 x^6+6 x^5+42 x^4+x^3+24 x^2+x+4$
- $y^2=26 x^6+2 x^5+30 x^4+14 x^3+20 x^2+27 x+46$
- $y^2=36 x^6+10 x^5+9 x^4+23 x^3+6 x^2+41 x+42$
- $y^2=41 x^6+30 x^5+37 x^4+20 x^3+37 x^2+30 x+41$
- $y^2=17 x^6+9 x^5+44 x^4+6 x^3+44 x^2+9 x+17$
- $y^2=45 x^6+30 x^4+44 x^3+29 x^2+26$
- $y^2=37 x^6+9 x^4+32 x^3+4 x^2+36$
- $y^2=26 x^6+9 x^5+5 x^4+18 x^3+5 x^2+9 x+26$
- $y^2=36 x^6+45 x^5+25 x^4+43 x^3+25 x^2+45 x+36$
- $y^2=37 x^6+4 x^5+8 x^4+40 x^2+41 x+19$
- $y^2=21 x^6+14 x^5+3 x^4+16 x^3+37 x^2+25 x+16$
- $y^2=11 x^6+23 x^5+15 x^4+33 x^3+44 x^2+31 x+33$
- $y^2=46 x^6+40 x^5+44 x^4+34 x^3+44 x^2+40 x+46$
- $y^2=42 x^6+12 x^5+32 x^4+29 x^3+32 x^2+12 x+42$
- $y^2=3 x^6+9 x^5+5 x^4+18 x^3+37 x^2+14 x+13$
- $y^2=15 x^6+45 x^5+25 x^4+43 x^3+44 x^2+23 x+18$
- $y^2=46 x^6+34 x^5+42 x^4+8 x^3+15 x^2+24 x+27$
- $y^2=21 x^6+19 x^5+42 x^4+41 x^3+2 x^2+20 x+27$
- $y^2=11 x^6+x^5+22 x^4+17 x^3+10 x^2+6 x+41$
- $y^2=31 x^6+3 x^5+38 x^4+34 x^3+14 x^2+13 x$
- $y^2=14 x^6+15 x^5+2 x^4+29 x^3+23 x^2+18 x$
- $y^2=21 x^6+8 x^5+31 x^4+24 x^3+23 x^2+18 x+18$
- $y^2=11 x^6+40 x^5+14 x^4+26 x^3+21 x^2+43 x+43$
- $y^2=40 x^6+29 x^5+42 x^4+19 x^3+42 x^2+29 x+40$
- $y^2=12 x^6+4 x^5+22 x^4+x^3+22 x^2+4 x+12$
- $y^2=18 x^6+12 x^4+12 x^2+18$
- $y^2=43 x^6+13 x^4+13 x^2+43$
- $y^2=18 x^6+13 x^4+18 x^2+41$
- $y^2=31 x^6+17 x^4+38 x^2+21$
- $y^2=x^5+46 x$
- $y^2=x^5+x$
- $y^2=x^6+x^3+28$
- $y^2=5 x^6+5 x^3+46$
- $y^2=7 x^6+21 x^5+40 x^4+13 x^3+38 x^2+28 x+12$
- $y^2=35 x^6+11 x^5+12 x^4+18 x^3+2 x^2+46 x+13$
- $y^2=8 x^6+25 x^5+29 x^4+21 x^3+41 x^2+8 x+9$
- $y^2=40 x^6+31 x^5+4 x^4+11 x^3+17 x^2+40 x+45$
- $y^2=5 x^6+42 x^5+42 x^4+18 x^3+42 x^2+42 x+5$
- $y^2=25 x^6+22 x^5+22 x^4+43 x^3+22 x^2+22 x+25$
- $y^2=28 x^6+9 x^4+9 x^2+28$
- $y^2=46 x^6+45 x^4+45 x^2+46$
- $y^2=28 x^6+45 x^4+37 x^2+22$
- $y^2=21 x^6+32 x^4+19 x^2+40$
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$
Endomorphism algebra over $\overline{\F}_{47}$
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.dq 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $47$ and $\infty$. |
Base change
This is a primitive isogeny class.
Twists