Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 23 x^{2} )^{2}$ |
| $1 + 46 x^{2} + 529 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.5$ |
| Angle rank: | $0$ (numerical) |
| Jacobians: | $30$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
| $p$-rank: | $0$ |
| Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $576$ | $331776$ | $148060224$ | $77720518656$ | $41426524086336$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $622$ | $12168$ | $277726$ | $6436344$ | $148084558$ | $3404825448$ | $78309865918$ | $1801152661464$ | $41426536959022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):
- $y^2=3 x^6+16 x^4+16 x^2+3$
- $y^2=15 x^6+11 x^4+11 x^2+15$
- $y^2=3 x^6+11 x^4+9 x^2+7$
- $y^2=22 x^6+19 x^4+3 x^2+13$
- $y^2=x^6+x^3+12$
- $y^2=5 x^6+5 x^3+14$
- $y^2=14 x^5+7 x^4+13 x^3+20 x^2+19 x$
- $y^2=x^5+12 x^4+19 x^3+8 x^2+3 x$
- $y^2=4 x^5+12 x^4+9 x^3+13 x^2+13 x$
- $y^2=20 x^5+14 x^4+22 x^3+19 x^2+19 x$
- $y^2=12 x^6+11 x^5+14 x^4+20 x^3+14 x^2+11 x+12$
- $y^2=14 x^6+9 x^5+x^4+8 x^3+x^2+9 x+14$
- $y^2=10 x^6+12 x^5+15 x^4+2 x^3+19 x^2+3 x+7$
- $y^2=4 x^6+14 x^5+6 x^4+10 x^3+3 x^2+15 x+12$
- $y^2=5 x^6+19 x^5+5 x^4+5 x^2+19 x+5$
- $y^2=2 x^6+3 x^5+2 x^4+2 x^2+3 x+2$
- $y^2=13 x^6+12 x^4+7 x^3+x^2+12$
- $y^2=19 x^6+14 x^4+12 x^3+5 x^2+14$
- $y^2=x^6+4 x^5+18 x^4+16 x^3+18 x^2+4 x+1$
- $y^2=5 x^6+20 x^5+21 x^4+11 x^3+21 x^2+20 x+5$
- $y^2=x^6+x^3+2$
- $y^2=5 x^6+5 x^3+10$
- $y^2=20 x^6+2 x^5+20 x^4+14 x^3+7 x^2+16 x+10$
- $y^2=8 x^6+10 x^5+8 x^4+x^3+12 x^2+11 x+4$
- $y^2=x^5+22 x$
- $y^2=x^5+x$
- $y^2=x^6+22$
- $y^2=x^6+13$
- $y^2=5 x^6+19$
- $y^2=6 x^5+4 x^3+3 x$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$| The isogeny class factors as 1.23.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-23}) \)$)$ |
| The base change of $A$ to $\F_{23^{2}}$ is 1.529.bu 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $23$ and $\infty$. |
Base change
This is a primitive isogeny class.