Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 29 x^{2} )^{2}$ |
$1 - 12 x + 94 x^{2} - 348 x^{3} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.311919362152$, $\pm0.311919362152$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $26$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $576$ | $746496$ | $609892416$ | $501943910400$ | $420638113567296$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $886$ | $25002$ | $709678$ | $20507778$ | $594733606$ | $17249435802$ | $500246371678$ | $14507158502898$ | $420707309659606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=17 x^6+x^5+26 x^4+24 x^3+15 x^2+25 x+21$
- $y^2=5 x^6+20 x^4+20 x^2+5$
- $y^2=5 x^6+19 x^5+23 x^4+7 x^3+22 x^2+17 x+7$
- $y^2=26 x^6+2 x^5+19 x^4+21 x^3+8 x^2+21 x+2$
- $y^2=3 x^6+13 x^5+18 x^4+15 x^3+27 x^2+22 x+21$
- $y^2=16 x^5+14 x^4+3 x^3+19 x^2+20 x$
- $y^2=11 x^6+5 x^5+12 x^4+16 x^3+27 x^2+27 x+17$
- $y^2=11 x^6+19 x^5+11 x^4+27 x^3+11 x^2+19 x+11$
- $y^2=20 x^6+24 x^4+24 x^2+20$
- $y^2=23 x^6+17 x^4+17 x^2+23$
- $y^2=14 x^6+10 x^5+13 x^4+8 x^3+13 x^2+10 x+14$
- $y^2=8 x^6+5 x^4+5 x^2+8$
- $y^2=18 x^6+9 x^5+4 x^4+7 x^3+x^2+6 x+3$
- $y^2=25 x^5+15 x^4+5 x^3+14 x^2+25 x$
- $y^2=25 x^6+27 x^5+4 x^4+10 x^3+22 x^2+12 x+16$
- $y^2=17 x^6+21 x^5+18 x^4+5 x^3+18 x^2+21 x+17$
- $y^2=11 x^6+20 x^5+26 x^4+22 x^3+26 x^2+20 x+11$
- $y^2=6 x^6+14 x^5+6 x^3+17 x+16$
- $y^2=21 x^5+24 x^4+15 x^3+6 x^2+14 x$
- $y^2=9 x^6+28 x^5+19 x^4+10 x^3+10 x^2+28 x+20$
- $y^2=14 x^6+26 x^5+19 x^4+25 x^3+27 x^2+8 x+8$
- $y^2=9 x^6+24 x^5+7 x^4+23 x^3+25 x^2+25 x+5$
- $y^2=18 x^6+28 x^5+24 x^4+21 x^3+13 x^2+6 x+14$
- $y^2=3 x^6+23 x^5+10 x^4+18 x^3+12 x^2+25 x+14$
- $y^2=15 x^6+20 x^4+20 x^2+15$
- $y^2=23 x^6+6 x^5+9 x^4+3 x^3+9 x^2+6 x+23$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.ag 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$ |
Base change
This is a primitive isogeny class.