Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 4 x + 19 x^{2} )( 1 + 4 x + 19 x^{2} )$ |
| $1 + 22 x^{2} + 361 x^{4}$ | |
| Frobenius angles: | $\pm0.348268167089$, $\pm0.651731832911$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $62$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $384$ | $147456$ | $47032704$ | $17045913600$ | $6131066527104$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $20$ | $406$ | $6860$ | $130798$ | $2476100$ | $47019526$ | $893871740$ | $16983971038$ | $322687697780$ | $6131066796406$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 62 curves (of which all are hyperelliptic):
- $y^2=9 x^6+2 x^4+4 x^2+15$
- $y^2=12 x^6+10 x^4+x^2+1$
- $y^2=14 x^6+11 x^5+x^4+8 x^3+5 x^2+5 x+14$
- $y^2=9 x^6+3 x^5+2 x^4+16 x^3+10 x^2+10 x+9$
- $y^2=4 x^6+10 x^4+16 x^3+8 x^2+7 x+18$
- $y^2=3 x^6+5 x^4+10 x^2+5$
- $y^2=18 x^6+7 x^4+14 x^2+11$
- $y^2=4 x^6+12 x^5+12 x^4+15 x^3+3 x^2+17 x+18$
- $y^2=8 x^6+5 x^5+5 x^4+11 x^3+6 x^2+15 x+17$
- $y^2=8 x^5+8 x^4+3 x^3+10 x^2+4 x+5$
- $y^2=14 x^5+10 x^4+11 x^3+8 x^2+12 x$
- $y^2=9 x^5+x^4+3 x^3+16 x^2+5 x$
- $y^2=12 x^5+x^4+9 x^3+4 x^2+6 x+1$
- $y^2=5 x^5+2 x^4+18 x^3+8 x^2+12 x+2$
- $y^2=2 x^5+10 x^4+9 x^3+5 x^2+5 x+16$
- $y^2=4 x^5+x^4+18 x^3+10 x^2+10 x+13$
- $y^2=5 x^6+15 x^5+11 x^4+8 x^3+10 x^2+17 x+12$
- $y^2=18 x^6+13 x^5+17 x^4+6 x^3+7 x^2+12 x+12$
- $y^2=17 x^6+7 x^5+15 x^4+12 x^3+14 x^2+5 x+5$
- $y^2=6 x^6+10 x^5+2 x^4+16 x^3+18 x^2+15 x+5$
- and 42 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{2}}$.
Endomorphism algebra over $\F_{19}$| The isogeny class factors as 1.19.ae $\times$ 1.19.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{19^{2}}$ is 1.361.w 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ |
Base change
This is a primitive isogeny class.