Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 4 x + 43 x^{2} )^{2}$ |
| $1 + 8 x + 102 x^{2} + 344 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.598655510457$, $\pm0.598655510457$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $68$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2304$ | $3686400$ | $6249851136$ | $11679989760000$ | $21618611340505344$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $1990$ | $78604$ | $3416398$ | $147056932$ | $6321272470$ | $271816888444$ | $11688211063198$ | $502592642869012$ | $21611481725774950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):
- $y^2=12 x^6+14 x^5+10 x^4+14 x^3+11 x^2+35 x+33$
- $y^2=30 x^6+19 x^5+4 x^4+8 x^3+13 x^2+28 x+35$
- $y^2=39 x^5+x^4+38 x^3+x^2+39 x$
- $y^2=15 x^6+10 x^5+17 x^4+21 x^3+35 x^2+4 x+25$
- $y^2=7 x^6+19 x^5+42 x^4+31 x^3+42 x^2+19 x+7$
- $y^2=33 x^6+21 x^5+29 x^4+17 x^3+29 x^2+21 x+33$
- $y^2=34 x^6+18 x^5+28 x^4+29 x^3+13 x^2+28 x$
- $y^2=28 x^6+13 x^4+13 x^2+28$
- $y^2=6 x^6+21 x^4+21 x^2+6$
- $y^2=12 x^6+21 x^5+32 x^4+5 x^3+5 x^2+22 x+42$
- $y^2=23 x^6+40 x^5+13 x^4+42 x^3+13 x^2+40 x+23$
- $y^2=17 x^6+14 x^5+15 x^4+40 x^3+24 x^2+30 x+6$
- $y^2=35 x^6+14 x^5+33 x^3+14 x+35$
- $y^2=23 x^6+34 x^5+20 x^4+22 x^3+20 x^2+34 x+23$
- $y^2=4 x^6+17 x^5+14 x^4+33 x^3+14 x^2+17 x+4$
- $y^2=17 x^6+15 x^5+14 x^4+39 x^3+14 x^2+15 x+17$
- $y^2=42 x^6+20 x^5+16 x^4+36 x^3+16 x^2+20 x+42$
- $y^2=25 x^6+16 x^5+4 x^4+7 x^3+15 x^2+10 x+25$
- $y^2=x^6+19 x^5+36 x^4+7 x^3+6 x^2+28 x+1$
- $y^2=26 x^6+23 x^4+23 x^2+26$
- and 48 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.e 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-39}) \)$)$ |
Base change
This is a primitive isogeny class.