Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 79 x^{2} )^{2}$ |
| $1 - 16 x + 222 x^{2} - 1264 x^{3} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.351411445414$, $\pm0.351411445414$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $123$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5184$ | $40144896$ | $244455091776$ | $1517392925097984$ | $9467782732292917824$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $64$ | $6430$ | $495808$ | $38957374$ | $3076896064$ | $243085596766$ | $19203906782656$ | $1517108939120254$ | $119851597190404672$ | $9468276082081256350$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 123 curves (of which all are hyperelliptic):
- $y^2=51 x^6+39 x^5+10 x^4+36 x^2+3 x+36$
- $y^2=10 x^6+77 x^5+31 x^4+31 x^3+31 x^2+77 x+10$
- $y^2=32 x^6+23 x^5+57 x^4+73 x^3+35 x^2+13 x+19$
- $y^2=x^6+x^3+22$
- $y^2=74 x^6+74 x^5+16 x^4+12 x^3+16 x^2+74 x+74$
- $y^2=26 x^6+32 x^5+67 x^4+57 x^3+67 x^2+32 x+26$
- $y^2=7 x^6+55 x^5+74 x^4+15 x^3+74 x^2+55 x+7$
- $y^2=50 x^6+4 x^5+59 x^4+29 x^3+57 x^2+8 x+31$
- $y^2=x^6+31 x^5+4 x^4+74 x^3+8 x^2+45 x+8$
- $y^2=74 x^6+73 x^5+37 x^4+55 x^3+7 x^2+13 x+75$
- $y^2=2 x^6+49 x^5+26 x^4+18 x^3+26 x^2+49 x+2$
- $y^2=34 x^6+58 x^5+27 x^4+54 x^3+24 x^2+35 x+36$
- $y^2=15 x^6+14 x^4+35 x^3+14 x^2+15$
- $y^2=74 x^6+20 x^5+68 x^4+45 x^3+15 x^2+62 x+75$
- $y^2=23 x^5+76 x^4+22 x^3+30 x^2+72 x+14$
- $y^2=77 x^6+14 x^5+63 x^4+16 x^3+2 x^2+53 x+29$
- $y^2=67 x^6+70 x^5+19 x^4+17 x^3+46 x^2+57 x+38$
- $y^2=44 x^6+50 x^5+31 x^4+3 x^3+31 x^2+50 x+44$
- $y^2=15 x^6+14 x^5+64 x^4+74 x^3+73 x^2+37 x+61$
- $y^2=24 x^6+17 x^5+41 x^4+61 x^3+48 x^2+28 x+66$
- and 103 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.