Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 6 x + 17 x^{2} )( 1 + 6 x + 17 x^{2} )$ |
$1 - 2 x^{2} + 289 x^{4}$ | |
Frobenius angles: | $\pm0.240632536990$, $\pm0.759367463010$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $49$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $288$ | $82944$ | $24139296$ | $7072137216$ | $2015993076768$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $286$ | $4914$ | $84670$ | $1419858$ | $24141022$ | $410338674$ | $6975432574$ | $118587876498$ | $2015992253086$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 49 curves (of which all are hyperelliptic):
- $y^2=15 x^6+9 x^5+14 x^4+x^3+x^2+x+7$
- $y^2=11 x^6+16 x^4+16 x^3+15 x^2+3 x+12$
- $y^2=16 x^6+14 x^4+14 x^3+11 x^2+9 x+2$
- $y^2=4 x^6+3 x^4+15 x^3+3 x^2+10 x$
- $y^2=12 x^6+9 x^4+11 x^3+9 x^2+13 x$
- $y^2=2 x^6+16 x^5+5 x^4+11 x^2+16 x+9$
- $y^2=x^6+3 x^5+6 x^4+7 x^3+15 x^2+11 x+15$
- $y^2=3 x^6+10 x^5+x^4+12 x^3+7 x^2+5 x+16$
- $y^2=x^6+6 x^5+7 x^4+16 x^3+13 x^2+7 x+11$
- $y^2=3 x^6+x^5+4 x^4+14 x^3+5 x^2+4 x+16$
- $y^2=x^6+9 x^5+x^4+6 x^3+15 x^2+10 x+2$
- $y^2=3 x^6+10 x^5+3 x^4+x^3+11 x^2+13 x+6$
- $y^2=4 x^5+7 x^4+7 x^3+x^2+15 x$
- $y^2=6 x^6+12 x^5+2 x^4+16 x^3+x^2+10 x+12$
- $y^2=x^6+2 x^5+6 x^4+14 x^3+3 x^2+13 x+2$
- $y^2=x^6+5 x^5+12 x^4+14 x^3+13 x^2+9 x+3$
- $y^2=10 x^6+12 x^5+2 x^4+3 x^3+6 x^2+4 x+10$
- $y^2=13 x^6+2 x^5+6 x^4+9 x^3+x^2+12 x+13$
- $y^2=16 x^6+4 x^5+9 x^4+6 x^3+4 x^2+15 x+9$
- $y^2=14 x^6+12 x^5+10 x^4+x^3+12 x^2+11 x+10$
- and 29 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.ag $\times$ 1.17.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{17^{2}}$ is 1.289.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.