-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 288, 'abvar_counts': [288, 82944, 24139296, 7072137216, 2015993076768, 582705611375616, 168377826888037152, 48658925715634520064, 14063084451947882543904, 4064228085576507141325824], 'abvar_counts_str': '288 82944 24139296 7072137216 2015993076768 582705611375616 168377826888037152 48658925715634520064 14063084451947882543904 4064228085576507141325824 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.240632536990461, 0.759367463009539], 'center_dim': 4, 'cohen_macaulay_max': 3, 'curve_count': 18, 'curve_counts': [18, 286, 4914, 84670, 1419858, 24141022, 410338674, 6975432574, 118587876498, 2015992253086], 'curve_counts_str': '18 286 4914 84670 1419858 24141022 410338674 6975432574 118587876498 2015992253086 ', 'curves': ['y^2=15*x^6+9*x^5+14*x^4+x^3+x^2+x+7', 'y^2=11*x^6+16*x^4+16*x^3+15*x^2+3*x+12', 'y^2=16*x^6+14*x^4+14*x^3+11*x^2+9*x+2', 'y^2=4*x^6+3*x^4+15*x^3+3*x^2+10*x', 'y^2=12*x^6+9*x^4+11*x^3+9*x^2+13*x', 'y^2=2*x^6+16*x^5+5*x^4+11*x^2+16*x+9', 'y^2=x^6+3*x^5+6*x^4+7*x^3+15*x^2+11*x+15', 'y^2=3*x^6+10*x^5+x^4+12*x^3+7*x^2+5*x+16', 'y^2=x^6+6*x^5+7*x^4+16*x^3+13*x^2+7*x+11', 'y^2=3*x^6+x^5+4*x^4+14*x^3+5*x^2+4*x+16', 'y^2=x^6+9*x^5+x^4+6*x^3+15*x^2+10*x+2', 'y^2=3*x^6+10*x^5+3*x^4+x^3+11*x^2+13*x+6', 'y^2=4*x^5+7*x^4+7*x^3+x^2+15*x', 'y^2=6*x^6+12*x^5+2*x^4+16*x^3+x^2+10*x+12', 'y^2=x^6+2*x^5+6*x^4+14*x^3+3*x^2+13*x+2', 'y^2=x^6+5*x^5+12*x^4+14*x^3+13*x^2+9*x+3', 'y^2=10*x^6+12*x^5+2*x^4+3*x^3+6*x^2+4*x+10', 'y^2=13*x^6+2*x^5+6*x^4+9*x^3+x^2+12*x+13', 'y^2=16*x^6+4*x^5+9*x^4+6*x^3+4*x^2+15*x+9', 'y^2=14*x^6+12*x^5+10*x^4+x^3+12*x^2+11*x+10', 'y^2=6*x^6+8*x^5+3*x^4+11*x^3+2*x^2+13*x+15', 'y^2=6*x^6+3*x^5+4*x^4+2*x^3+16*x^2+13*x+4', 'y^2=x^6+9*x^5+12*x^4+6*x^3+14*x^2+5*x+12', 'y^2=x^6+x^3+4', 'y^2=3*x^6+3*x^3+12', 'y^2=13*x^6+5*x^5+16*x^4+3*x^3+8*x^2+9*x+8', 'y^2=5*x^6+16*x^5+13*x^4+9*x^3+3*x^2+10*x+12', 'y^2=5*x^5+7*x^4+x^3+7*x^2+5*x', 'y^2=15*x^5+4*x^4+3*x^3+4*x^2+15*x', 'y^2=4*x^6+x^5+3*x^4+2*x^3+10*x^2+8*x+16', 'y^2=16*x^6+5*x^5+2*x^3+14*x^2+15*x+2', 'y^2=14*x^6+15*x^5+6*x^3+8*x^2+11*x+6', 'y^2=11*x^6+12*x^4+2*x^2+8', 'y^2=8*x^6+6*x^4+x^2+12', 'y^2=16*x^6+16*x^5+10*x^4+2*x^3+16*x^2+16*x+9', 'y^2=14*x^6+14*x^5+13*x^4+6*x^3+14*x^2+14*x+10', 'y^2=14*x^6+10*x^5+15*x^4+x^3+15*x^2+3*x+7', 'y^2=8*x^6+13*x^5+11*x^4+3*x^3+11*x^2+9*x+4', 'y^2=3*x^6+13*x^4+5*x^2+13', 'y^2=16*x^6+5*x^4+15*x^2+7', 'y^2=4*x^6+6*x^5+6*x^4+8*x^3+14*x^2+14*x+6', 'y^2=x^6+x^3+15', 'y^2=3*x^6+3*x^3+11', 'y^2=15*x^6+3*x^5+8*x^4+4*x^3+12*x^2+7*x+16', 'y^2=x^6+13*x^5+3*x^4+8*x^3+13*x^2+8*x+14', 'y^2=14*x^5+14*x^4+11*x^3+13*x+7', 'y^2=8*x^5+8*x^4+16*x^3+5*x+4', 'y^2=9*x^6+x^5+2*x^4+16*x^3+2*x^2+16*x', 'y^2=13*x^6+13*x^5+6*x^4+16*x^2+15*x+6'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 56, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.8.1'], 'geometric_splitting_field': '2.0.8.1', 'geometric_splitting_polynomials': [[2, 0, 1]], 'group_structure_count': 12, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 49, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 49, 'label': '2.17.a_ac', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 8, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.8.1', '2.0.8.1'], 'p': 17, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, -2, 0, 289], 'poly_str': '1 0 -2 0 289 ', 'primitive_models': [], 'q': 17, 'real_poly': [1, 0, -36], 'simple_distinct': ['1.17.ag', '1.17.g'], 'simple_factors': ['1.17.agA', '1.17.gA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,F-3', '3,7*F-8', '3,F-4'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '2.0.8.1', 'splitting_polynomials': [[2, 0, 1]], 'twist_count': 8, 'twists': [['2.17.am_cs', '2.289.ae_wk', 2], ['2.17.m_cs', '2.289.ae_wk', 2], ['2.17.a_c', '2.83521.bse_bcgmw', 4], ['2.17.ag_t', '2.24137569.fcu_eiedvy', 6], ['2.17.g_t', '2.24137569.fcu_eiedvy', 6], ['2.17.ai_bg', '2.6975757441.asmoy_faoxxvhu', 8], ['2.17.i_bg', '2.6975757441.asmoy_faoxxvhu', 8]], 'weak_equivalence_count': 92, 'zfv_index': 576, 'zfv_index_factorization': [[2, 6], [3, 2]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 1024, 'zfv_singular_count': 6, 'zfv_singular_primes': ['2,F-3', '3,7*F-8', '3,F-4']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 11222
{'base_label': '2.17.a_ac', 'extension_degree': 1, 'extension_label': '1.17.ag', 'multiplicity': 1}
-
id: 11223
{'base_label': '2.17.a_ac', 'extension_degree': 1, 'extension_label': '1.17.g', 'multiplicity': 1}
-
id: 11224
{'base_label': '2.17.a_ac', 'extension_degree': 2, 'extension_label': '1.289.ac', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.8.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.17.ag', 'galois_group': '2T1', 'places': [['7', '1'], ['10', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.8.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.17.g', 'galois_group': '2T1', 'places': [['10', '1'], ['7', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.8.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.289.ac', 'galois_group': '2T1', 'places': [['7', '1'], ['10', '1']]}