Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 71 x^{2} )^{2}$ |
$1 + 142 x^{2} + 5041 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.5$ |
Angle rank: | $0$ (numerical) |
Jacobians: | $210$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
$p$-rank: | $0$ |
Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5184$ | $26873856$ | $128100999744$ | $645241282560000$ | $3255243554618339904$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $5326$ | $357912$ | $25391518$ | $1804229352$ | $128101715566$ | $9095120158392$ | $645753429599038$ | $45848500718449032$ | $3255243558226798606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):
- $y^2=16 x^6+7 x^5+26 x^4+36 x^3+69 x^2+66 x+4$
- $y^2=41 x^6+49 x^5+40 x^4+39 x^3+57 x^2+36 x+28$
- $y^2=55 x^6+10 x^5+2 x^4+12 x^3+2 x^2+10 x+55$
- $y^2=30 x^6+70 x^5+14 x^4+13 x^3+14 x^2+70 x+30$
- $y^2=11 x^6+15 x^5+35 x^4+60 x^3+55 x^2+24 x+52$
- $y^2=6 x^6+34 x^5+32 x^4+65 x^3+30 x^2+26 x+9$
- $y^2=48 x^6+52 x^5+23 x^4+48 x^3+23 x^2+52 x+48$
- $y^2=52 x^6+9 x^5+19 x^4+52 x^3+19 x^2+9 x+52$
- $y^2=45 x^6+30 x^5+49 x^4+63 x^3+35 x^2+24 x+46$
- $y^2=2 x^6+35 x^5+53 x^3+50 x^2+7 x+6$
- $y^2=14 x^6+32 x^5+16 x^3+66 x^2+49 x+42$
- $y^2=4 x^6+59 x^4+59 x^2+4$
- $y^2=28 x^6+58 x^4+58 x^2+28$
- $y^2=4 x^6+58 x^4+51 x^2+23$
- $y^2=69 x^6+55 x^4+30 x^2+24$
- $y^2=70 x^6+44 x^5+31 x^4+x^3+47 x^2+13 x+35$
- $y^2=64 x^6+24 x^5+4 x^4+7 x^3+45 x^2+20 x+32$
- $y^2=44 x^6+59 x^5+68 x^4+51 x^3+68 x^2+59 x+44$
- $y^2=24 x^6+58 x^5+50 x^4+2 x^3+50 x^2+58 x+24$
- $y^2=59 x^6+4 x^5+16 x^4+54 x^3+38 x^2+27 x+65$
- and 190 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The isogeny class factors as 1.71.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-71}) \)$)$ |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.fm 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $71$ and $\infty$. |
Base change
This is a primitive isogeny class.