Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 59 x^{2} )^{2}$ |
$1 + 118 x^{2} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.5$ |
Angle rank: | $0$ (numerical) |
Jacobians: | $132$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
$p$-rank: | $0$ |
Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3600$ | $12960000$ | $42180944400$ | $146661788160000$ | $511116754730490000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $3718$ | $205380$ | $12103438$ | $714924300$ | $42181355158$ | $2488651484820$ | $146830389134878$ | $8662995818654940$ | $511116756160338598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=x^5+58$
- $y^2=2 x^5+57$
- $y^2=55 x^6+10 x^5+34 x^4+32 x^3+52 x^2+14 x+31$
- $y^2=51 x^6+20 x^5+9 x^4+5 x^3+45 x^2+28 x+3$
- $y^2=40 x^6+52 x^5+12 x^4+48 x^3+12 x^2+52 x+40$
- $y^2=21 x^6+45 x^5+24 x^4+37 x^3+24 x^2+45 x+21$
- $y^2=14 x^6+26 x^5+33 x^4+11 x^3+12 x^2+54 x+24$
- $y^2=28 x^6+52 x^5+7 x^4+22 x^3+24 x^2+49 x+48$
- $y^2=17 x^6+57 x^5+37 x^4+37 x^3+44 x^2+51 x+41$
- $y^2=34 x^6+55 x^5+15 x^4+15 x^3+29 x^2+43 x+23$
- $y^2=16 x^6+3 x^5+35 x^4+58 x^3+35 x^2+3 x+16$
- $y^2=32 x^6+6 x^5+11 x^4+57 x^3+11 x^2+6 x+32$
- $y^2=15 x^6+51 x^5+2 x^4+20 x^3+53 x^2+17 x+8$
- $y^2=30 x^6+43 x^5+4 x^4+40 x^3+47 x^2+34 x+16$
- $y^2=29 x^6+11 x^5+56 x^4+39 x^3+5 x^2+24 x+34$
- $y^2=54 x^6+12 x^5+7 x^4+14 x^2+11 x+19$
- $y^2=45 x^6+19 x^4+19 x^2+45$
- $y^2=31 x^6+38 x^4+38 x^2+31$
- $y^2=45 x^6+38 x^4+17 x^2+6$
- $y^2=16 x^6+33 x^4+7 x^2+10$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-59}) \)$)$ |
The base change of $A$ to $\F_{59^{2}}$ is 1.3481.eo 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $59$ and $\infty$. |
Base change
This is a primitive isogeny class.