| L(s) = 1 | + 2·2-s + 2·4-s − 12·13-s − 4·16-s − 24·26-s − 4·31-s − 8·32-s + 4·37-s + 8·41-s − 8·43-s − 2·49-s − 24·52-s − 20·53-s − 8·62-s − 8·64-s − 24·67-s + 16·71-s + 8·74-s + 4·79-s + 16·82-s − 16·86-s + 8·89-s − 4·98-s − 40·106-s + 40·107-s + 18·121-s − 8·124-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 4-s − 3.32·13-s − 16-s − 4.70·26-s − 0.718·31-s − 1.41·32-s + 0.657·37-s + 1.24·41-s − 1.21·43-s − 2/7·49-s − 3.32·52-s − 2.74·53-s − 1.01·62-s − 64-s − 2.93·67-s + 1.89·71-s + 0.929·74-s + 0.450·79-s + 1.76·82-s − 1.72·86-s + 0.847·89-s − 0.404·98-s − 3.88·106-s + 3.86·107-s + 1.63·121-s − 0.718·124-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.621197324\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.621197324\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.516061643001699773332940007190, −9.083036447714271327438519503864, −8.910168511182405858955809737234, −8.019125174631113372499180427745, −7.73346092739650315909500991897, −7.47754021120688015074979337510, −7.00120183010161195083190607968, −6.68954276846004909212028006434, −6.05789323795730387692952724101, −5.87449035758814042716370077982, −5.21110462052087592162617998187, −4.79898371834878162805761280085, −4.69931443500905577394490657270, −4.37022307301714551849780774206, −3.41946103624942570234263870168, −3.30633519314885203279983963727, −2.56034412592333479285124990854, −2.31646103326752231060124674407, −1.70560832776912104271242698075, −0.34238756816583435796523064631,
0.34238756816583435796523064631, 1.70560832776912104271242698075, 2.31646103326752231060124674407, 2.56034412592333479285124990854, 3.30633519314885203279983963727, 3.41946103624942570234263870168, 4.37022307301714551849780774206, 4.69931443500905577394490657270, 4.79898371834878162805761280085, 5.21110462052087592162617998187, 5.87449035758814042716370077982, 6.05789323795730387692952724101, 6.68954276846004909212028006434, 7.00120183010161195083190607968, 7.47754021120688015074979337510, 7.73346092739650315909500991897, 8.019125174631113372499180427745, 8.910168511182405858955809737234, 9.083036447714271327438519503864, 9.516061643001699773332940007190