Invariants
Base field: | $\F_{11}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 18 x^{2} + 121 x^{4}$ |
Frobenius angles: | $\pm0.0974911145211$, $\pm0.902508885479$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{10})\) |
Galois group: | $C_2^2$ |
Jacobians: | $3$ |
Isomorphism classes: | 18 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $104$ | $10816$ | $1772264$ | $211993600$ | $25937745704$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $12$ | $86$ | $1332$ | $14478$ | $161052$ | $1772966$ | $19487172$ | $214403998$ | $2357947692$ | $25938066806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=2 x^6+7 x^5+x^4+6 x^3+8 x^2+2 x+1$
- $y^2=2 x^6+6 x^5+3 x^4+9 x^3+2 x^2+9 x+7$
- $y^2=2 x^6+5 x^5+3 x^4+x^2+8 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{2}}$.
Endomorphism algebra over $\F_{11}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{10})\). |
The base change of $A$ to $\F_{11^{2}}$ is 1.121.as 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-10}) \)$)$ |
Base change
This is a primitive isogeny class.