Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 10 x + 53 x^{2} )^{2}$ |
| $1 + 20 x + 206 x^{2} + 1060 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.740986412023$, $\pm0.740986412023$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $20$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4096$ | $7929856$ | $21989330944$ | $62347826692096$ | $174866938405851136$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $2822$ | $147698$ | $7901646$ | $418146394$ | $22164260438$ | $1174714749058$ | $62259659655838$ | $3299763708068714$ | $174887470832890022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=x^6+17 x^5+20 x^4+28 x^3+44 x^2+42 x+13$
- $y^2=x^6+11 x^5+43 x^4+4 x^3+43 x^2+11 x+1$
- $y^2=28 x^6+26 x^5+x^4+40 x^3+x^2+26 x+28$
- $y^2=13 x^6+48 x^5+46 x^4+52 x^3+18 x^2+40 x+11$
- $y^2=6 x^6+39 x^4+39 x^2+6$
- $y^2=12 x^6+46 x^5+13 x^4+21 x^3+29 x^2+42 x+31$
- $y^2=24 x^6+17 x^5+37 x^3+18 x^2+33 x+17$
- $y^2=25 x^6+42 x^5+31 x^4+6 x^3+31 x^2+42 x+25$
- $y^2=48 x^6+39 x^5+39 x^4+46 x^3+20 x^2+15 x+47$
- $y^2=39 x^6+19 x^5+29 x^4+39 x^3+29 x^2+33 x+34$
- $y^2=42 x^6+10 x^4+10 x^2+42$
- $y^2=9 x^6+x^5+20 x^4+7 x^3+20 x^2+x+9$
- $y^2=47 x^6+17 x^5+16 x^4+39 x^3+46 x^2+37 x+10$
- $y^2=39 x^6+33 x^4+33 x^2+39$
- $y^2=44 x^6+46 x^5+51 x^4+47 x^3+51 x^2+46 x+44$
- $y^2=46 x^6+43 x^5+40 x^4+31 x^3+40 x^2+43 x+46$
- $y^2=22 x^6+17 x^5+42 x^4+7 x^3+42 x^2+17 x+22$
- $y^2=26 x^6+38 x^5+24 x^4+39 x^3+24 x^2+38 x+26$
- $y^2=29 x^6+22 x^4+22 x^2+29$
- $y^2=14 x^6+41 x^4+9 x^3+26 x^2+9 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.k 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$ |
Base change
This is a primitive isogeny class.