Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 78 x^{2} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.0942308666757$, $\pm0.905769133324$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{43})\) |
Galois group: | $C_2^2$ |
Jacobians: | $30$ |
Isomorphism classes: | 34 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2132$ | $4545424$ | $10779257684$ | $23795040096256$ | $52599132687006932$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2054$ | $103824$ | $4876350$ | $229345008$ | $10779300038$ | $506623120464$ | $23811300629374$ | $1119130473102768$ | $52599133138183814$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):
- $y^2=35 x^6+4 x^5+46 x^4+9 x^3+25 x^2+9 x+17$
- $y^2=24 x^6+19 x^5+24 x^4+40 x^3+20 x^2+40 x+32$
- $y^2=7 x^6+22 x^5+31 x^4+23 x^3+27 x^2+5 x+10$
- $y^2=12 x^6+41 x^5+32 x^4+2 x^2+7 x+42$
- $y^2=21 x^6+34 x^5+45 x^4+44 x^3+27 x^2+16 x+38$
- $y^2=29 x^6+18 x^5+31 x^4+26 x^3+28 x^2+38 x+17$
- $y^2=4 x^6+43 x^5+14 x^4+36 x^3+46 x^2+2 x+38$
- $y^2=3 x^6+7 x^5+11 x^4+30 x^3+6 x^2+25 x+15$
- $y^2=23 x^6+16 x^5+16 x^4+34 x^3+18 x^2+41 x+37$
- $y^2=21 x^6+33 x^5+33 x^4+29 x^3+43 x^2+17 x+44$
- $y^2=22 x^6+3 x^5+9 x^4+38 x^3+39 x^2+25 x+32$
- $y^2=45 x^6+17 x^5+23 x^4+19 x^3+26 x^2+7 x+29$
- $y^2=37 x^6+38 x^5+21 x^4+x^3+36 x^2+35 x+4$
- $y^2=27 x^5+7 x^4+46 x^3+10 x^2+34 x$
- $y^2=21 x^6+34 x^5+2 x^4+4 x^3+14 x^2+5 x+12$
- $y^2=11 x^6+29 x^5+10 x^4+20 x^3+23 x^2+25 x+13$
- $y^2=33 x^6+46 x^5+45 x^4+35 x^2+36 x+31$
- $y^2=30 x^6+13 x^5+9 x^4+32 x^3+14 x^2+5 x+41$
- $y^2=3 x^5+25 x^4+28 x^3+39 x^2+35 x+7$
- $y^2=15 x^5+31 x^4+46 x^3+7 x^2+34 x+35$
- $y^2=23 x^6+38 x^5+31 x^4+29 x^3+16 x^2+38 x+24$
- $y^2=29 x^6+37 x^5+7 x^4+x^3+19 x^2+28 x+24$
- $y^2=5 x^6+16 x^5+19 x^4+20 x^3+3 x^2+28 x+2$
- $y^2=12 x^6+26 x^5+35 x^4+26 x^3+27 x^2+20 x+19$
- $y^2=12 x^6+35 x^5+7 x^4+9 x^2+16 x+34$
- $y^2=42 x^6+6 x^4+19 x^3+31 x^2+13$
- $y^2=21 x^6+19 x^5+45 x^4+28 x^3+41 x^2+35 x+37$
- $y^2=11 x^6+x^5+37 x^4+46 x^3+17 x^2+34 x+44$
- $y^2=10 x^6+15 x^5+26 x^4+36 x^3+30 x^2+46 x+10$
- $y^2=42 x^6+35 x^5+36 x^4+46 x^3+29 x^2+44 x+30$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{43})\). |
The base change of $A$ to $\F_{47^{2}}$ is 1.2209.ada 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-43}) \)$)$ |
Base change
This is a primitive isogeny class.