-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2132, 'abvar_counts': [2132, 4545424, 10779257684, 23795040096256, 52599132687006932, 116192396218073043856, 256666986188212396010708, 566977705075467015606042624, 1252453015827221797996687100756, 2766668759425361074344572616052624], 'abvar_counts_str': '2132 4545424 10779257684 23795040096256 52599132687006932 116192396218073043856 256666986188212396010708 566977705075467015606042624 1252453015827221797996687100756 2766668759425361074344572616052624 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.09423086667572, 0.90576913332428], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 48, 'curve_counts': [48, 2054, 103824, 4876350, 229345008, 10779300038, 506623120464, 23811300629374, 1119130473102768, 52599133138183814], 'curve_counts_str': '48 2054 103824 4876350 229345008 10779300038 506623120464 23811300629374 1119130473102768 52599133138183814 ', 'curves': ['y^2=35*x^6+4*x^5+46*x^4+9*x^3+25*x^2+9*x+17', 'y^2=24*x^6+19*x^5+24*x^4+40*x^3+20*x^2+40*x+32', 'y^2=7*x^6+22*x^5+31*x^4+23*x^3+27*x^2+5*x+10', 'y^2=12*x^6+41*x^5+32*x^4+2*x^2+7*x+42', 'y^2=21*x^6+34*x^5+45*x^4+44*x^3+27*x^2+16*x+38', 'y^2=29*x^6+18*x^5+31*x^4+26*x^3+28*x^2+38*x+17', 'y^2=4*x^6+43*x^5+14*x^4+36*x^3+46*x^2+2*x+38', 'y^2=3*x^6+7*x^5+11*x^4+30*x^3+6*x^2+25*x+15', 'y^2=23*x^6+16*x^5+16*x^4+34*x^3+18*x^2+41*x+37', 'y^2=21*x^6+33*x^5+33*x^4+29*x^3+43*x^2+17*x+44', 'y^2=22*x^6+3*x^5+9*x^4+38*x^3+39*x^2+25*x+32', 'y^2=45*x^6+17*x^5+23*x^4+19*x^3+26*x^2+7*x+29', 'y^2=37*x^6+38*x^5+21*x^4+x^3+36*x^2+35*x+4', 'y^2=27*x^5+7*x^4+46*x^3+10*x^2+34*x', 'y^2=21*x^6+34*x^5+2*x^4+4*x^3+14*x^2+5*x+12', 'y^2=11*x^6+29*x^5+10*x^4+20*x^3+23*x^2+25*x+13', 'y^2=33*x^6+46*x^5+45*x^4+35*x^2+36*x+31', 'y^2=30*x^6+13*x^5+9*x^4+32*x^3+14*x^2+5*x+41', 'y^2=3*x^5+25*x^4+28*x^3+39*x^2+35*x+7', 'y^2=15*x^5+31*x^4+46*x^3+7*x^2+34*x+35', 'y^2=23*x^6+38*x^5+31*x^4+29*x^3+16*x^2+38*x+24', 'y^2=29*x^6+37*x^5+7*x^4+x^3+19*x^2+28*x+24', 'y^2=5*x^6+16*x^5+19*x^4+20*x^3+3*x^2+28*x+2', 'y^2=12*x^6+26*x^5+35*x^4+26*x^3+27*x^2+20*x+19', 'y^2=12*x^6+35*x^5+7*x^4+9*x^2+16*x+34', 'y^2=42*x^6+6*x^4+19*x^3+31*x^2+13', 'y^2=21*x^6+19*x^5+45*x^4+28*x^3+41*x^2+35*x+37', 'y^2=11*x^6+x^5+37*x^4+46*x^3+17*x^2+34*x+44', 'y^2=10*x^6+15*x^5+26*x^4+36*x^3+30*x^2+46*x+10', 'y^2=42*x^6+35*x^5+36*x^4+46*x^3+29*x^2+44*x+30'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 7, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.43.1'], 'geometric_splitting_field': '2.0.43.1', 'geometric_splitting_polynomials': [[11, -1, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 30, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 30, 'label': '2.47.a_ada', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.29584.2'], 'p': 47, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 13, 1, 12]], 'poly': [1, 0, -78, 0, 2209], 'poly_str': '1 0 -78 0 2209 ', 'primitive_models': [], 'principal_polarization_count': 43, 'q': 47, 'real_poly': [1, 0, -172], 'simple_distinct': ['2.47.a_ada'], 'simple_factors': ['2.47.a_adaA'], 'simple_multiplicities': [1], 'singular_primes': ['2,2*F-V+1'], 'size': 34, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.29584.2', 'splitting_polynomials': [[121, 0, -21, 0, 1]], 'twist_count': 6, 'twists': [['2.47.ai_eg', '2.4879681.aeye_bbleug', 4], ['2.47.a_da', '2.4879681.aeye_bbleug', 4], ['2.47.i_eg', '2.4879681.aeye_bbleug', 4], ['2.47.ae_abf', '2.116191483108948578241.exyzorfw_jrcqproudtlzoig', 12], ['2.47.e_abf', '2.116191483108948578241.exyzorfw_jrcqproudtlzoig', 12]], 'weak_equivalence_count': 7, 'zfv_index': 64, 'zfv_index_factorization': [[2, 6]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_pic_size': 12, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 256, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,2*F-V+1']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 35575
{'base_label': '2.47.a_ada', 'extension_degree': 1, 'extension_label': '2.47.a_ada', 'multiplicity': 1}
-
id: 35576
{'base_label': '2.47.a_ada', 'extension_degree': 2, 'extension_label': '1.2209.ada', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.29584.2', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.47.a_ada', 'galois_group': '4T2', 'places': [['12', '0', '1', '0'], ['14', '0', '1', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.43.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.2209.ada', 'galois_group': '2T1', 'places': [['24', '1'], ['22', '1']]}