# Stored data for abelian variety isogeny class 2.47.a_ada, downloaded from the LMFDB on 02 September 2025. {"abvar_count": 2132, "abvar_counts": [2132, 4545424, 10779257684, 23795040096256, 52599132687006932, 116192396218073043856, 256666986188212396010708, 566977705075467015606042624, 1252453015827221797996687100756, 2766668759425361074344572616052624], "abvar_counts_str": "2132 4545424 10779257684 23795040096256 52599132687006932 116192396218073043856 256666986188212396010708 566977705075467015606042624 1252453015827221797996687100756 2766668759425361074344572616052624 ", "all_polarized_product": false, "all_unpolarized_product": false, "angle_corank": 1, "angle_rank": 1, "angles": [0.09423086667572, 0.90576913332428], "center_dim": 4, "cohen_macaulay_max": 1, "curve_count": 48, "curve_counts": [48, 2054, 103824, 4876350, 229345008, 10779300038, 506623120464, 23811300629374, 1119130473102768, 52599133138183814], "curve_counts_str": "48 2054 103824 4876350 229345008 10779300038 506623120464 23811300629374 1119130473102768 52599133138183814 ", "curves": ["y^2=35*x^6+4*x^5+46*x^4+9*x^3+25*x^2+9*x+17", "y^2=24*x^6+19*x^5+24*x^4+40*x^3+20*x^2+40*x+32", "y^2=7*x^6+22*x^5+31*x^4+23*x^3+27*x^2+5*x+10", "y^2=12*x^6+41*x^5+32*x^4+2*x^2+7*x+42", "y^2=21*x^6+34*x^5+45*x^4+44*x^3+27*x^2+16*x+38", "y^2=29*x^6+18*x^5+31*x^4+26*x^3+28*x^2+38*x+17", "y^2=4*x^6+43*x^5+14*x^4+36*x^3+46*x^2+2*x+38", "y^2=3*x^6+7*x^5+11*x^4+30*x^3+6*x^2+25*x+15", "y^2=23*x^6+16*x^5+16*x^4+34*x^3+18*x^2+41*x+37", "y^2=21*x^6+33*x^5+33*x^4+29*x^3+43*x^2+17*x+44", "y^2=22*x^6+3*x^5+9*x^4+38*x^3+39*x^2+25*x+32", "y^2=45*x^6+17*x^5+23*x^4+19*x^3+26*x^2+7*x+29", "y^2=37*x^6+38*x^5+21*x^4+x^3+36*x^2+35*x+4", "y^2=27*x^5+7*x^4+46*x^3+10*x^2+34*x", "y^2=21*x^6+34*x^5+2*x^4+4*x^3+14*x^2+5*x+12", "y^2=11*x^6+29*x^5+10*x^4+20*x^3+23*x^2+25*x+13", "y^2=33*x^6+46*x^5+45*x^4+35*x^2+36*x+31", "y^2=30*x^6+13*x^5+9*x^4+32*x^3+14*x^2+5*x+41", "y^2=3*x^5+25*x^4+28*x^3+39*x^2+35*x+7", "y^2=15*x^5+31*x^4+46*x^3+7*x^2+34*x+35", "y^2=23*x^6+38*x^5+31*x^4+29*x^3+16*x^2+38*x+24", "y^2=29*x^6+37*x^5+7*x^4+x^3+19*x^2+28*x+24", "y^2=5*x^6+16*x^5+19*x^4+20*x^3+3*x^2+28*x+2", "y^2=12*x^6+26*x^5+35*x^4+26*x^3+27*x^2+20*x+19", "y^2=12*x^6+35*x^5+7*x^4+9*x^2+16*x+34", "y^2=42*x^6+6*x^4+19*x^3+31*x^2+13", "y^2=21*x^6+19*x^5+45*x^4+28*x^3+41*x^2+35*x+37", "y^2=11*x^6+x^5+37*x^4+46*x^3+17*x^2+34*x+44", "y^2=10*x^6+15*x^5+26*x^4+36*x^3+30*x^2+46*x+10", "y^2=42*x^6+35*x^5+36*x^4+46*x^3+29*x^2+44*x+30"], "dim1_distinct": 0, "dim1_factors": 0, "dim2_distinct": 1, "dim2_factors": 1, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 7, "g": 2, "galois_groups": ["4T2"], "geom_dim1_distinct": 1, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 2, "geometric_extension_degree": 2, "geometric_galois_groups": ["2T1"], "geometric_number_fields": ["2.0.43.1"], "geometric_splitting_field": "2.0.43.1", "geometric_splitting_polynomials": [[11, -1, 1]], "group_structure_count": 2, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 30, "is_geometrically_simple": false, "is_geometrically_squarefree": false, "is_primitive": true, "is_simple": true, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 30, "label": "2.47.a_ada", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 12, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["4.0.29584.2"], "p": 47, "p_rank": 2, "p_rank_deficit": 0, "pic_prime_gens": [[1, 13, 1, 12]], "poly": [1, 0, -78, 0, 2209], "poly_str": "1 0 -78 0 2209 ", "primitive_models": [], "principal_polarization_count": 43, "q": 47, "real_poly": [1, 0, -172], "simple_distinct": ["2.47.a_ada"], "simple_factors": ["2.47.a_adaA"], "simple_multiplicities": [1], "singular_primes": ["2,2*F-V+1"], "size": 34, "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.29584.2", "splitting_polynomials": [[121, 0, -21, 0, 1]], "twist_count": 6, "twists": [["2.47.ai_eg", "2.4879681.aeye_bbleug", 4], ["2.47.a_da", "2.4879681.aeye_bbleug", 4], ["2.47.i_eg", "2.4879681.aeye_bbleug", 4], ["2.47.ae_abf", "2.116191483108948578241.exyzorfw_jrcqproudtlzoig", 12], ["2.47.e_abf", "2.116191483108948578241.exyzorfw_jrcqproudtlzoig", 12]], "weak_equivalence_count": 7, "zfv_index": 64, "zfv_index_factorization": [[2, 6]], "zfv_is_bass": true, "zfv_is_maximal": false, "zfv_pic_size": 12, "zfv_plus_index": 2, "zfv_plus_index_factorization": [[2, 1]], "zfv_plus_norm": 256, "zfv_singular_count": 2, "zfv_singular_primes": ["2,2*F-V+1"]}