Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 83 x^{2} )^{2}$ |
$1 + 166 x^{2} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.5$ |
Angle rank: | $0$ (numerical) |
Jacobians: | $179$ |
This isogeny class is not simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
$p$-rank: | $0$ |
Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7056$ | $49787136$ | $326941516944$ | $2250984755367936$ | $15516041195083934736$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $7222$ | $571788$ | $47430766$ | $3939040644$ | $326942660518$ | $27136050989628$ | $2252292042305758$ | $186940255267540404$ | $15516041202962016022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 179 curves (of which all are hyperelliptic):
- $y^2=41 x^6+11 x^5+27 x^4+10 x^3+7 x^2+82 x+46$
- $y^2=82 x^6+22 x^5+54 x^4+20 x^3+14 x^2+81 x+9$
- $y^2=18 x^6+56 x^5+12 x^4+33 x^3+37 x^2+20 x+43$
- $y^2=36 x^6+29 x^5+24 x^4+66 x^3+74 x^2+40 x+3$
- $y^2=74 x^6+70 x^5+23 x^4+46 x^2+52 x+11$
- $y^2=38 x^6+73 x^5+63 x^4+55 x^3+82 x^2+29 x+22$
- $y^2=76 x^6+63 x^5+43 x^4+27 x^3+81 x^2+58 x+44$
- $y^2=3 x^6+59 x^5+7 x^4+28 x^3+60 x^2+26 x+41$
- $y^2=6 x^6+35 x^5+14 x^4+56 x^3+37 x^2+52 x+82$
- $y^2=5 x^6+54 x^5+47 x^4+19 x^3+69 x^2+3 x+3$
- $y^2=10 x^6+25 x^5+11 x^4+38 x^3+55 x^2+6 x+6$
- $y^2=13 x^6+62 x^5+4 x^4+69 x^3+29 x^2+53 x+22$
- $y^2=26 x^6+41 x^5+8 x^4+55 x^3+58 x^2+23 x+44$
- $y^2=4 x^6+70 x^5+26 x^4+29 x^3+26 x^2+70 x+4$
- $y^2=8 x^6+57 x^5+52 x^4+58 x^3+52 x^2+57 x+8$
- $y^2=60 x^6+11 x^5+80 x^4+77 x^2+39 x+65$
- $y^2=18 x^6+67 x^5+75 x^4+48 x^3+38 x^2+54 x+24$
- $y^2=36 x^6+51 x^5+67 x^4+13 x^3+76 x^2+25 x+48$
- $y^2=60 x^6+8 x^5+12 x^4+13 x^3+12 x^2+8 x+60$
- $y^2=37 x^6+16 x^5+24 x^4+26 x^3+24 x^2+16 x+37$
- and 159 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-83}) \)$)$ |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.gk 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $83$ and $\infty$. |
Base change
This is a primitive isogeny class.