Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 2 x + 31 x^{2} )^{2}$ |
| $1 + 4 x + 66 x^{2} + 124 x^{3} + 961 x^{4}$ | |
| Frobenius angles: | $\pm0.557482058976$, $\pm0.557482058976$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $24$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1156$ | $1040400$ | $876988996$ | $850231526400$ | $820109499102916$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $1078$ | $29436$ | $920638$ | $28645956$ | $887559478$ | $27511981596$ | $852890572798$ | $26439642697956$ | $819628260310198$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=5 x^6+30 x^5+10 x^4+8 x^3+10 x^2+30 x+5$
- $y^2=25 x^6+12 x^5+16 x^4+11 x^3+28 x^2+10 x+3$
- $y^2=3 x^6+15 x^3+3$
- $y^2=3 x^6+30 x^3+24$
- $y^2=26 x^6+4 x^5+5 x^4+4 x^3+5 x^2+4 x+26$
- $y^2=10 x^6+22 x^5+3 x^4+29 x^3+30 x^2+30 x+18$
- $y^2=10 x^6+3 x^5+5 x^4+16 x^3+5 x^2+3 x+10$
- $y^2=28 x^6+7 x^5+x^4+25 x^3+5 x^2+13 x+2$
- $y^2=21 x^6+2 x^5+11 x^4+25 x^3+18 x^2+20$
- $y^2=6 x^6+22 x^5+11 x^4+11 x^3+27 x^2+28 x+5$
- $y^2=5 x^6+25 x^5+28 x^3+10 x+18$
- $y^2=27 x^6+19 x^5+5 x^4+24 x^3+12 x^2+18 x+5$
- $y^2=21 x^6+21 x^5+28 x^4+15 x^3+22 x^2+25 x+15$
- $y^2=18 x^6+19 x^5+20 x^4+2 x^3+20 x^2+19 x+18$
- $y^2=9 x^6+20 x^5+23 x^4+17 x^3+27 x^2+5 x+5$
- $y^2=30 x^6+x^5+22 x^4+20 x^3+18 x^2+17 x+30$
- $y^2=6 x^6+4 x^5+29 x^4+2 x^3+17 x^2+10 x+12$
- $y^2=5 x^6+25 x^5+25 x^4+2 x^3+10 x^2+15 x+13$
- $y^2=20 x^6+17 x^4+17 x^2+20$
- $y^2=15 x^6+23 x^5+2 x^4+25 x^3+2 x^2+23 x+15$
- $y^2=3 x^6+12 x^5+15 x^3+21 x^2+19 x+6$
- $y^2=15 x^6+26 x^4+26 x^2+15$
- $y^2=8 x^6+8 x^5+17 x^4+26 x^3+15 x^2+22 x+1$
- $y^2=6 x^6+6 x^5+27 x^4+14 x^3+27 x^2+6 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$| The isogeny class factors as 1.31.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-30}) \)$)$ |
Base change
This is a primitive isogeny class.