Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 46 x^{2} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.198986253580$, $\pm0.801013746420$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\zeta_{12})\) |
Galois group: | $C_2^2$ |
Jacobians: | $329$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5284$ | $27920656$ | $151334864356$ | $806945377222656$ | $4297625825559516964$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $74$ | $5238$ | $389018$ | $28415326$ | $2073071594$ | $151335502422$ | $11047398519098$ | $806460059555518$ | $58871586708267914$ | $4297625821415476278$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 329 curves (of which all are hyperelliptic):
- $y^2=61 x^6+52 x^5+58 x^4+57 x^2+28 x+46$
- $y^2=37 x^6+52 x^5+47 x^4+68 x^3+4 x^2+63 x+62$
- $y^2=24 x^6+16 x^5+14 x^4+49 x^3+37 x^2+3 x+51$
- $y^2=22 x^6+69 x^5+9 x^4+7 x^3+62 x^2+22 x+53$
- $y^2=3 x^6+64 x^5+38 x^4+29 x^3+56 x^2+12 x+21$
- $y^2=34 x^6+8 x^5+55 x^4+57 x^3+68 x^2+61 x+71$
- $y^2=20 x^5+57 x^4+40 x^3+15 x^2+35 x+41$
- $y^2=27 x^5+66 x^4+54 x^3+2 x^2+29 x+59$
- $y^2=10 x^6+46 x^5+34 x^4+17 x^3+47 x^2+36 x+1$
- $y^2=50 x^6+11 x^5+24 x^4+12 x^3+16 x^2+34 x+5$
- $y^2=33 x^6+7 x^5+34 x^4+2 x^3+62 x^2+72 x+55$
- $y^2=19 x^6+35 x^5+24 x^4+10 x^3+18 x^2+68 x+56$
- $y^2=27 x^6+63 x^5+64 x^4+45 x^3+60 x^2+32 x+54$
- $y^2=62 x^6+23 x^5+28 x^4+6 x^3+8 x^2+14 x+51$
- $y^2=41 x^6+50 x^5+8 x^4+45 x^3+30 x^2+37 x+28$
- $y^2=51 x^6+61 x^5+47 x^4+51 x^3+20 x^2+23 x+17$
- $y^2=36 x^6+13 x^5+16 x^4+36 x^3+27 x^2+42 x+12$
- $y^2=70 x^6+67 x^5+49 x^4+72 x^3+45 x^2+4 x+51$
- $y^2=21 x^6+39 x^5+8 x^4+59 x^3+23 x^2+9 x+40$
- $y^2=32 x^6+49 x^5+40 x^4+3 x^3+42 x^2+45 x+54$
- and 309 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{12})\). |
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.abu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.