Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 79 x^{2} )^{2}$ |
$1 - 4 x + 162 x^{2} - 316 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.464111352053$, $\pm0.464111352053$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6084$ | $40908816$ | $243548172036$ | $1516233883567104$ | $9467911264180305924$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $76$ | $6550$ | $493972$ | $38927614$ | $3076937836$ | $243088993366$ | $19203921428404$ | $1517108713301374$ | $119851594806470668$ | $9468276087906361750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=20 x^6+18 x^5+60 x^4+50 x^3+37 x^2+63 x+19$
- $y^2=59 x^6+77 x^5+33 x^4+69 x^3+39 x^2+27 x+39$
- $y^2=x^6+42 x^3+65$
- $y^2=54 x^6+9 x^5+18 x^4+34 x^3+40 x^2+72 x+56$
- $y^2=42 x^6+47 x^5+40 x^4+42 x^3+14 x^2+40 x+46$
- $y^2=19 x^6+16 x^5+53 x^4+39 x^3+46 x^2+3 x+61$
- $y^2=72 x^6+27 x^5+33 x^4+23 x^3+5 x^2+38 x+21$
- $y^2=77 x^6+64 x^5+58 x^4+39 x^3+57 x^2+39 x+4$
- $y^2=35 x^6+22 x^5+74 x^4+3 x^3+53 x^2+20 x+33$
- $y^2=70 x^6+29 x^5+55 x^4+25 x^3+55 x^2+29 x+70$
- $y^2=19 x^6+7 x^5+63 x^4+10 x^3+28 x^2+56 x+50$
- $y^2=58 x^6+68 x^5+44 x^4+71 x^3+67 x^2+15 x+36$
- $y^2=30 x^6+26 x^5+77 x^4+26 x^3+60 x^2+57 x+36$
- $y^2=18 x^6+59 x^5+12 x^4+7 x^3+57 x^2+61 x+53$
- $y^2=16 x^6+48 x^5+44 x^4+26 x^3+18 x^2+37 x+73$
- $y^2=x^6+x^3+46$
- $y^2=53 x^6+54 x^5+73 x^4+15 x^3+55 x^2+74 x+74$
- $y^2=71 x^6+14 x^5+36 x^4+28 x^3+55 x^2+63 x+27$
- $y^2=61 x^6+3 x^5+24 x^4+50 x^3+3 x^2+66$
- $y^2=2 x^6+67 x^5+28 x^4+61 x^3+7 x+42$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.ac 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-78}) \)$)$ |
Base change
This is a primitive isogeny class.