Properties

Label 1800.2.d.g.1549.1
Level $1800$
Weight $2$
Character 1800.1549
Analytic conductor $14.373$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1800,2,Mod(1549,1800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1800.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,0,0,0,0,-4,0,0,0,0,-12,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1549.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1800.1549
Dual form 1800.2.d.g.1549.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} +4.00000i q^{7} +(-2.00000 - 2.00000i) q^{8} +2.00000i q^{11} -6.00000 q^{13} +(4.00000 + 4.00000i) q^{14} -4.00000 q^{16} -6.00000i q^{17} +4.00000i q^{19} +(2.00000 + 2.00000i) q^{22} +8.00000i q^{23} +(-6.00000 + 6.00000i) q^{26} +8.00000 q^{28} +6.00000i q^{29} -2.00000 q^{31} +(-4.00000 + 4.00000i) q^{32} +(-6.00000 - 6.00000i) q^{34} +2.00000 q^{37} +(4.00000 + 4.00000i) q^{38} +4.00000 q^{41} -4.00000 q^{43} +4.00000 q^{44} +(8.00000 + 8.00000i) q^{46} +4.00000i q^{47} -9.00000 q^{49} +12.0000i q^{52} -10.0000 q^{53} +(8.00000 - 8.00000i) q^{56} +(6.00000 + 6.00000i) q^{58} +2.00000i q^{59} -4.00000i q^{61} +(-2.00000 + 2.00000i) q^{62} +8.00000i q^{64} -12.0000 q^{67} -12.0000 q^{68} +8.00000 q^{71} +10.0000i q^{73} +(2.00000 - 2.00000i) q^{74} +8.00000 q^{76} -8.00000 q^{77} +2.00000 q^{79} +(4.00000 - 4.00000i) q^{82} +(-4.00000 + 4.00000i) q^{86} +(4.00000 - 4.00000i) q^{88} +4.00000 q^{89} -24.0000i q^{91} +16.0000 q^{92} +(4.00000 + 4.00000i) q^{94} -2.00000i q^{97} +(-9.00000 + 9.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{8} - 12 q^{13} + 8 q^{14} - 8 q^{16} + 4 q^{22} - 12 q^{26} + 16 q^{28} - 4 q^{31} - 8 q^{32} - 12 q^{34} + 4 q^{37} + 8 q^{38} + 8 q^{41} - 8 q^{43} + 8 q^{44} + 16 q^{46} - 18 q^{49}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.707107 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) 0 0
\(6\) 0 0
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000i 0.603023i 0.953463 + 0.301511i \(0.0974911\pi\)
−0.953463 + 0.301511i \(0.902509\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 4.00000 + 4.00000i 1.06904 + 1.06904i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 6.00000i 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.00000 + 2.00000i 0.426401 + 0.426401i
\(23\) 8.00000i 1.66812i 0.551677 + 0.834058i \(0.313988\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.00000 + 6.00000i −1.17670 + 1.17670i
\(27\) 0 0
\(28\) 8.00000 1.51186
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) −4.00000 + 4.00000i −0.707107 + 0.707107i
\(33\) 0 0
\(34\) −6.00000 6.00000i −1.02899 1.02899i
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 4.00000 + 4.00000i 0.648886 + 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 8.00000 + 8.00000i 1.17954 + 1.17954i
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 12.0000i 1.66410i
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 8.00000 8.00000i 1.06904 1.06904i
\(57\) 0 0
\(58\) 6.00000 + 6.00000i 0.787839 + 0.787839i
\(59\) 2.00000i 0.260378i 0.991489 + 0.130189i \(0.0415584\pi\)
−0.991489 + 0.130189i \(0.958442\pi\)
\(60\) 0 0
\(61\) 4.00000i 0.512148i −0.966657 0.256074i \(-0.917571\pi\)
0.966657 0.256074i \(-0.0824290\pi\)
\(62\) −2.00000 + 2.00000i −0.254000 + 0.254000i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) −12.0000 −1.45521
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 2.00000 2.00000i 0.232495 0.232495i
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) −8.00000 −0.911685
\(78\) 0 0
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4.00000 4.00000i 0.441726 0.441726i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 + 4.00000i −0.431331 + 0.431331i
\(87\) 0 0
\(88\) 4.00000 4.00000i 0.426401 0.426401i
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) 24.0000i 2.51588i
\(92\) 16.0000 1.66812
\(93\) 0 0
\(94\) 4.00000 + 4.00000i 0.412568 + 0.412568i
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000i 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) −9.00000 + 9.00000i −0.909137 + 0.909137i
\(99\) 0 0
\(100\) 0 0
\(101\) 10.0000i 0.995037i 0.867453 + 0.497519i \(0.165755\pi\)
−0.867453 + 0.497519i \(0.834245\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) 12.0000 + 12.0000i 1.17670 + 1.17670i
\(105\) 0 0
\(106\) −10.0000 + 10.0000i −0.971286 + 0.971286i
\(107\) 20.0000 1.93347 0.966736 0.255774i \(-0.0823304\pi\)
0.966736 + 0.255774i \(0.0823304\pi\)
\(108\) 0 0
\(109\) 8.00000i 0.766261i −0.923694 0.383131i \(-0.874846\pi\)
0.923694 0.383131i \(-0.125154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 16.0000i 1.51186i
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 12.0000 1.11417
\(117\) 0 0
\(118\) 2.00000 + 2.00000i 0.184115 + 0.184115i
\(119\) 24.0000 2.20008
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) −4.00000 4.00000i −0.362143 0.362143i
\(123\) 0 0
\(124\) 4.00000i 0.359211i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 8.00000 + 8.00000i 0.707107 + 0.707107i
\(129\) 0 0
\(130\) 0 0
\(131\) 18.0000i 1.57267i −0.617802 0.786334i \(-0.711977\pi\)
0.617802 0.786334i \(-0.288023\pi\)
\(132\) 0 0
\(133\) −16.0000 −1.38738
\(134\) −12.0000 + 12.0000i −1.03664 + 1.03664i
\(135\) 0 0
\(136\) −12.0000 + 12.0000i −1.02899 + 1.02899i
\(137\) 2.00000i 0.170872i 0.996344 + 0.0854358i \(0.0272282\pi\)
−0.996344 + 0.0854358i \(0.972772\pi\)
\(138\) 0 0
\(139\) 4.00000i 0.339276i −0.985506 0.169638i \(-0.945740\pi\)
0.985506 0.169638i \(-0.0542598\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.00000 8.00000i 0.671345 0.671345i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 10.0000 + 10.0000i 0.827606 + 0.827606i
\(147\) 0 0
\(148\) 4.00000i 0.328798i
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 8.00000 8.00000i 0.648886 0.648886i
\(153\) 0 0
\(154\) −8.00000 + 8.00000i −0.644658 + 0.644658i
\(155\) 0 0
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 2.00000 2.00000i 0.159111 0.159111i
\(159\) 0 0
\(160\) 0 0
\(161\) −32.0000 −2.52195
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 8.00000i 0.624695i
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 8.00000i 0.609994i
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 8.00000i 0.603023i
\(177\) 0 0
\(178\) 4.00000 4.00000i 0.299813 0.299813i
\(179\) 6.00000i 0.448461i 0.974536 + 0.224231i \(0.0719869\pi\)
−0.974536 + 0.224231i \(0.928013\pi\)
\(180\) 0 0
\(181\) 16.0000i 1.18927i −0.803996 0.594635i \(-0.797296\pi\)
0.803996 0.594635i \(-0.202704\pi\)
\(182\) −24.0000 24.0000i −1.77900 1.77900i
\(183\) 0 0
\(184\) 16.0000 16.0000i 1.17954 1.17954i
\(185\) 0 0
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) 0 0
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) 26.0000i 1.87152i −0.352636 0.935760i \(-0.614715\pi\)
0.352636 0.935760i \(-0.385285\pi\)
\(194\) −2.00000 2.00000i −0.143592 0.143592i
\(195\) 0 0
\(196\) 18.0000i 1.28571i
\(197\) −14.0000 −0.997459 −0.498729 0.866758i \(-0.666200\pi\)
−0.498729 + 0.866758i \(0.666200\pi\)
\(198\) 0 0
\(199\) 6.00000 0.425329 0.212664 0.977125i \(-0.431786\pi\)
0.212664 + 0.977125i \(0.431786\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 10.0000 + 10.0000i 0.703598 + 0.703598i
\(203\) −24.0000 −1.68447
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 8.00000i −0.557386 0.557386i
\(207\) 0 0
\(208\) 24.0000 1.66410
\(209\) −8.00000 −0.553372
\(210\) 0 0
\(211\) 12.0000i 0.826114i 0.910705 + 0.413057i \(0.135539\pi\)
−0.910705 + 0.413057i \(0.864461\pi\)
\(212\) 20.0000i 1.37361i
\(213\) 0 0
\(214\) 20.0000 20.0000i 1.36717 1.36717i
\(215\) 0 0
\(216\) 0 0
\(217\) 8.00000i 0.543075i
\(218\) −8.00000 8.00000i −0.541828 0.541828i
\(219\) 0 0
\(220\) 0 0
\(221\) 36.0000i 2.42162i
\(222\) 0 0
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) −16.0000 16.0000i −1.06904 1.06904i
\(225\) 0 0
\(226\) 6.00000 + 6.00000i 0.399114 + 0.399114i
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 20.0000i 1.32164i 0.750546 + 0.660819i \(0.229791\pi\)
−0.750546 + 0.660819i \(0.770209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 12.0000 12.0000i 0.787839 0.787839i
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) 24.0000 24.0000i 1.55569 1.55569i
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 7.00000 7.00000i 0.449977 0.449977i
\(243\) 0 0
\(244\) −8.00000 −0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 24.0000i 1.52708i
\(248\) 4.00000 + 4.00000i 0.254000 + 0.254000i
\(249\) 0 0
\(250\) 0 0
\(251\) 18.0000i 1.13615i −0.822977 0.568075i \(-0.807688\pi\)
0.822977 0.568075i \(-0.192312\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 22.0000i 1.37232i −0.727450 0.686161i \(-0.759294\pi\)
0.727450 0.686161i \(-0.240706\pi\)
\(258\) 0 0
\(259\) 8.00000i 0.497096i
\(260\) 0 0
\(261\) 0 0
\(262\) −18.0000 18.0000i −1.11204 1.11204i
\(263\) 12.0000i 0.739952i −0.929041 0.369976i \(-0.879366\pi\)
0.929041 0.369976i \(-0.120634\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −16.0000 + 16.0000i −0.981023 + 0.981023i
\(267\) 0 0
\(268\) 24.0000i 1.46603i
\(269\) 2.00000i 0.121942i −0.998140 0.0609711i \(-0.980580\pi\)
0.998140 0.0609711i \(-0.0194197\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 24.0000i 1.45521i
\(273\) 0 0
\(274\) 2.00000 + 2.00000i 0.120824 + 0.120824i
\(275\) 0 0
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −4.00000 4.00000i −0.239904 0.239904i
\(279\) 0 0
\(280\) 0 0
\(281\) −28.0000 −1.67034 −0.835170 0.549992i \(-0.814631\pi\)
−0.835170 + 0.549992i \(0.814631\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) 16.0000i 0.949425i
\(285\) 0 0
\(286\) −12.0000 12.0000i −0.709575 0.709575i
\(287\) 16.0000i 0.944450i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 20.0000 1.17041
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 4.00000i −0.232495 0.232495i
\(297\) 0 0
\(298\) 6.00000 + 6.00000i 0.347571 + 0.347571i
\(299\) 48.0000i 2.77591i
\(300\) 0 0
\(301\) 16.0000i 0.922225i
\(302\) −2.00000 + 2.00000i −0.115087 + 0.115087i
\(303\) 0 0
\(304\) 16.0000i 0.917663i
\(305\) 0 0
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 16.0000i 0.911685i
\(309\) 0 0
\(310\) 0 0
\(311\) 32.0000 1.81455 0.907277 0.420534i \(-0.138157\pi\)
0.907277 + 0.420534i \(0.138157\pi\)
\(312\) 0 0
\(313\) 18.0000i 1.01742i 0.860938 + 0.508710i \(0.169877\pi\)
−0.860938 + 0.508710i \(0.830123\pi\)
\(314\) −14.0000 + 14.0000i −0.790066 + 0.790066i
\(315\) 0 0
\(316\) 4.00000i 0.225018i
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) −32.0000 + 32.0000i −1.78329 + 1.78329i
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) 0 0
\(326\) −16.0000 + 16.0000i −0.886158 + 0.886158i
\(327\) 0 0
\(328\) −8.00000 8.00000i −0.441726 0.441726i
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 4.00000i 0.219860i −0.993939 0.109930i \(-0.964937\pi\)
0.993939 0.109930i \(-0.0350627\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 12.0000 + 12.0000i 0.656611 + 0.656611i
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000i 0.980522i 0.871576 + 0.490261i \(0.163099\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 23.0000 23.0000i 1.25104 1.25104i
\(339\) 0 0
\(340\) 0 0
\(341\) 4.00000i 0.216612i
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 8.00000 + 8.00000i 0.431331 + 0.431331i
\(345\) 0 0
\(346\) 14.0000 14.0000i 0.752645 0.752645i
\(347\) 20.0000 1.07366 0.536828 0.843692i \(-0.319622\pi\)
0.536828 + 0.843692i \(0.319622\pi\)
\(348\) 0 0
\(349\) 20.0000i 1.07058i 0.844670 + 0.535288i \(0.179797\pi\)
−0.844670 + 0.535288i \(0.820203\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8.00000 8.00000i −0.426401 0.426401i
\(353\) 6.00000i 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 8.00000i 0.423999i
\(357\) 0 0
\(358\) 6.00000 + 6.00000i 0.317110 + 0.317110i
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −16.0000 16.0000i −0.840941 0.840941i
\(363\) 0 0
\(364\) −48.0000 −2.51588
\(365\) 0 0
\(366\) 0 0
\(367\) 12.0000i 0.626395i 0.949688 + 0.313197i \(0.101400\pi\)
−0.949688 + 0.313197i \(0.898600\pi\)
\(368\) 32.0000i 1.66812i
\(369\) 0 0
\(370\) 0 0
\(371\) 40.0000i 2.07670i
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 12.0000 12.0000i 0.620505 0.620505i
\(375\) 0 0
\(376\) 8.00000 8.00000i 0.412568 0.412568i
\(377\) 36.0000i 1.85409i
\(378\) 0 0
\(379\) 12.0000i 0.616399i −0.951322 0.308199i \(-0.900274\pi\)
0.951322 0.308199i \(-0.0997264\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 16.0000 16.0000i 0.818631 0.818631i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −26.0000 26.0000i −1.32337 1.32337i
\(387\) 0 0
\(388\) −4.00000 −0.203069
\(389\) 10.0000i 0.507020i 0.967333 + 0.253510i \(0.0815851\pi\)
−0.967333 + 0.253510i \(0.918415\pi\)
\(390\) 0 0
\(391\) 48.0000 2.42746
\(392\) 18.0000 + 18.0000i 0.909137 + 0.909137i
\(393\) 0 0
\(394\) −14.0000 + 14.0000i −0.705310 + 0.705310i
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 6.00000 6.00000i 0.300753 0.300753i
\(399\) 0 0
\(400\) 0 0
\(401\) 24.0000 1.19850 0.599251 0.800561i \(-0.295465\pi\)
0.599251 + 0.800561i \(0.295465\pi\)
\(402\) 0 0
\(403\) 12.0000 0.597763
\(404\) 20.0000 0.995037
\(405\) 0 0
\(406\) −24.0000 + 24.0000i −1.19110 + 1.19110i
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) −8.00000 −0.393654
\(414\) 0 0
\(415\) 0 0
\(416\) 24.0000 24.0000i 1.17670 1.17670i
\(417\) 0 0
\(418\) −8.00000 + 8.00000i −0.391293 + 0.391293i
\(419\) 14.0000i 0.683945i 0.939710 + 0.341972i \(0.111095\pi\)
−0.939710 + 0.341972i \(0.888905\pi\)
\(420\) 0 0
\(421\) 4.00000i 0.194948i 0.995238 + 0.0974740i \(0.0310763\pi\)
−0.995238 + 0.0974740i \(0.968924\pi\)
\(422\) 12.0000 + 12.0000i 0.584151 + 0.584151i
\(423\) 0 0
\(424\) 20.0000 + 20.0000i 0.971286 + 0.971286i
\(425\) 0 0
\(426\) 0 0
\(427\) 16.0000 0.774294
\(428\) 40.0000i 1.93347i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 10.0000i 0.480569i −0.970702 0.240285i \(-0.922759\pi\)
0.970702 0.240285i \(-0.0772408\pi\)
\(434\) −8.00000 8.00000i −0.384012 0.384012i
\(435\) 0 0
\(436\) −16.0000 −0.766261
\(437\) −32.0000 −1.53077
\(438\) 0 0
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 36.0000 + 36.0000i 1.71235 + 1.71235i
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 16.0000 + 16.0000i 0.757622 + 0.757622i
\(447\) 0 0
\(448\) −32.0000 −1.51186
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) 8.00000i 0.376705i
\(452\) 12.0000 0.564433
\(453\) 0 0
\(454\) −12.0000 + 12.0000i −0.563188 + 0.563188i
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000i 0.842004i 0.907060 + 0.421002i \(0.138322\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(458\) 20.0000 + 20.0000i 0.934539 + 0.934539i
\(459\) 0 0
\(460\) 0 0
\(461\) 2.00000i 0.0931493i −0.998915 0.0465746i \(-0.985169\pi\)
0.998915 0.0465746i \(-0.0148305\pi\)
\(462\) 0 0
\(463\) 20.0000i 0.929479i 0.885448 + 0.464739i \(0.153852\pi\)
−0.885448 + 0.464739i \(0.846148\pi\)
\(464\) 24.0000i 1.11417i
\(465\) 0 0
\(466\) 6.00000 + 6.00000i 0.277945 + 0.277945i
\(467\) 32.0000 1.48078 0.740392 0.672176i \(-0.234640\pi\)
0.740392 + 0.672176i \(0.234640\pi\)
\(468\) 0 0
\(469\) 48.0000i 2.21643i
\(470\) 0 0
\(471\) 0 0
\(472\) 4.00000 4.00000i 0.184115 0.184115i
\(473\) 8.00000i 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) 48.0000i 2.20008i
\(477\) 0 0
\(478\) −16.0000 + 16.0000i −0.731823 + 0.731823i
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) −18.0000 + 18.0000i −0.819878 + 0.819878i
\(483\) 0 0
\(484\) 14.0000i 0.636364i
\(485\) 0 0
\(486\) 0 0
\(487\) 24.0000i 1.08754i 0.839233 + 0.543772i \(0.183004\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(488\) −8.00000 + 8.00000i −0.362143 + 0.362143i
\(489\) 0 0
\(490\) 0 0
\(491\) 34.0000i 1.53440i 0.641409 + 0.767199i \(0.278350\pi\)
−0.641409 + 0.767199i \(0.721650\pi\)
\(492\) 0 0
\(493\) 36.0000 1.62136
\(494\) −24.0000 24.0000i −1.07981 1.07981i
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 32.0000i 1.43540i
\(498\) 0 0
\(499\) 20.0000i 0.895323i −0.894203 0.447661i \(-0.852257\pi\)
0.894203 0.447661i \(-0.147743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −18.0000 18.0000i −0.803379 0.803379i
\(503\) 12.0000i 0.535054i 0.963550 + 0.267527i \(0.0862064\pi\)
−0.963550 + 0.267527i \(0.913794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −16.0000 + 16.0000i −0.711287 + 0.711287i
\(507\) 0 0
\(508\) 0 0
\(509\) 30.0000i 1.32973i −0.746965 0.664863i \(-0.768490\pi\)
0.746965 0.664863i \(-0.231510\pi\)
\(510\) 0 0
\(511\) −40.0000 −1.76950
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) −22.0000 22.0000i −0.970378 0.970378i
\(515\) 0 0
\(516\) 0 0
\(517\) −8.00000 −0.351840
\(518\) 8.00000 + 8.00000i 0.351500 + 0.351500i
\(519\) 0 0
\(520\) 0 0
\(521\) −24.0000 −1.05146 −0.525730 0.850652i \(-0.676208\pi\)
−0.525730 + 0.850652i \(0.676208\pi\)
\(522\) 0 0
\(523\) 40.0000 1.74908 0.874539 0.484955i \(-0.161164\pi\)
0.874539 + 0.484955i \(0.161164\pi\)
\(524\) −36.0000 −1.57267
\(525\) 0 0
\(526\) −12.0000 12.0000i −0.523225 0.523225i
\(527\) 12.0000i 0.522728i
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) 0 0
\(532\) 32.0000i 1.38738i
\(533\) −24.0000 −1.03956
\(534\) 0 0
\(535\) 0 0
\(536\) 24.0000 + 24.0000i 1.03664 + 1.03664i
\(537\) 0 0
\(538\) −2.00000 2.00000i −0.0862261 0.0862261i
\(539\) 18.0000i 0.775315i
\(540\) 0 0
\(541\) 32.0000i 1.37579i 0.725811 + 0.687894i \(0.241464\pi\)
−0.725811 + 0.687894i \(0.758536\pi\)
\(542\) −2.00000 + 2.00000i −0.0859074 + 0.0859074i
\(543\) 0 0
\(544\) 24.0000 + 24.0000i 1.02899 + 1.02899i
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 4.00000 0.170872
\(549\) 0 0
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 8.00000i 0.340195i
\(554\) −2.00000 + 2.00000i −0.0849719 + 0.0849719i
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) −30.0000 −1.27114 −0.635570 0.772043i \(-0.719235\pi\)
−0.635570 + 0.772043i \(0.719235\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) −28.0000 + 28.0000i −1.18111 + 1.18111i
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −28.0000 + 28.0000i −1.17693 + 1.17693i
\(567\) 0 0
\(568\) −16.0000 16.0000i −0.671345 0.671345i
\(569\) −32.0000 −1.34151 −0.670755 0.741679i \(-0.734030\pi\)
−0.670755 + 0.741679i \(0.734030\pi\)
\(570\) 0 0
\(571\) 20.0000i 0.836974i 0.908223 + 0.418487i \(0.137439\pi\)
−0.908223 + 0.418487i \(0.862561\pi\)
\(572\) −24.0000 −1.00349
\(573\) 0 0
\(574\) 16.0000 + 16.0000i 0.667827 + 0.667827i
\(575\) 0 0
\(576\) 0 0
\(577\) 10.0000i 0.416305i −0.978096 0.208153i \(-0.933255\pi\)
0.978096 0.208153i \(-0.0667451\pi\)
\(578\) −19.0000 + 19.0000i −0.790296 + 0.790296i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 20.0000i 0.828315i
\(584\) 20.0000 20.0000i 0.827606 0.827606i
\(585\) 0 0
\(586\) 22.0000 22.0000i 0.908812 0.908812i
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 8.00000i 0.329634i
\(590\) 0 0
\(591\) 0 0
\(592\) −8.00000 −0.328798
\(593\) 26.0000i 1.06769i −0.845582 0.533846i \(-0.820746\pi\)
0.845582 0.533846i \(-0.179254\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.0000 0.491539
\(597\) 0 0
\(598\) −48.0000 48.0000i −1.96287 1.96287i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) −16.0000 16.0000i −0.652111 0.652111i
\(603\) 0 0
\(604\) 4.00000i 0.162758i
\(605\) 0 0
\(606\) 0 0
\(607\) 4.00000i 0.162355i 0.996700 + 0.0811775i \(0.0258681\pi\)
−0.996700 + 0.0811775i \(0.974132\pi\)
\(608\) −16.0000 16.0000i −0.648886 0.648886i
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000i 0.970936i
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) −16.0000 + 16.0000i −0.645707 + 0.645707i
\(615\) 0 0
\(616\) 16.0000 + 16.0000i 0.644658 + 0.644658i
\(617\) 6.00000i 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) 0 0
\(619\) 20.0000i 0.803868i 0.915669 + 0.401934i \(0.131662\pi\)
−0.915669 + 0.401934i \(0.868338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 32.0000 32.0000i 1.28308 1.28308i
\(623\) 16.0000i 0.641026i
\(624\) 0 0
\(625\) 0 0
\(626\) 18.0000 + 18.0000i 0.719425 + 0.719425i
\(627\) 0 0
\(628\) 28.0000i 1.11732i
\(629\) 12.0000i 0.478471i
\(630\) 0 0
\(631\) −30.0000 −1.19428 −0.597141 0.802137i \(-0.703697\pi\)
−0.597141 + 0.802137i \(0.703697\pi\)
\(632\) −4.00000 4.00000i −0.159111 0.159111i
\(633\) 0 0
\(634\) 6.00000 6.00000i 0.238290 0.238290i
\(635\) 0 0
\(636\) 0 0
\(637\) 54.0000 2.13956
\(638\) −12.0000 + 12.0000i −0.475085 + 0.475085i
\(639\) 0 0
\(640\) 0 0
\(641\) −4.00000 −0.157991 −0.0789953 0.996875i \(-0.525171\pi\)
−0.0789953 + 0.996875i \(0.525171\pi\)
\(642\) 0 0
\(643\) 24.0000 0.946468 0.473234 0.880937i \(-0.343087\pi\)
0.473234 + 0.880937i \(0.343087\pi\)
\(644\) 64.0000i 2.52195i
\(645\) 0 0
\(646\) 24.0000 24.0000i 0.944267 0.944267i
\(647\) 12.0000i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(648\) 0 0
\(649\) −4.00000 −0.157014
\(650\) 0 0
\(651\) 0 0
\(652\) 32.0000i 1.25322i
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −16.0000 −0.624695
\(657\) 0 0
\(658\) −16.0000 + 16.0000i −0.623745 + 0.623745i
\(659\) 18.0000i 0.701180i 0.936529 + 0.350590i \(0.114019\pi\)
−0.936529 + 0.350590i \(0.885981\pi\)
\(660\) 0 0
\(661\) 28.0000i 1.08907i 0.838737 + 0.544537i \(0.183295\pi\)
−0.838737 + 0.544537i \(0.816705\pi\)
\(662\) −4.00000 4.00000i −0.155464 0.155464i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −48.0000 −1.85857
\(668\) 24.0000 0.928588
\(669\) 0 0
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) 2.00000i 0.0770943i −0.999257 0.0385472i \(-0.987727\pi\)
0.999257 0.0385472i \(-0.0122730\pi\)
\(674\) 18.0000 + 18.0000i 0.693334 + 0.693334i
\(675\) 0 0
\(676\) 46.0000i 1.76923i
\(677\) 14.0000 0.538064 0.269032 0.963131i \(-0.413296\pi\)
0.269032 + 0.963131i \(0.413296\pi\)
\(678\) 0 0
\(679\) 8.00000 0.307012
\(680\) 0 0
\(681\) 0 0
\(682\) −4.00000 4.00000i −0.153168 0.153168i
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8.00000 8.00000i −0.305441 0.305441i
\(687\) 0 0
\(688\) 16.0000 0.609994
\(689\) 60.0000 2.28582
\(690\) 0 0
\(691\) 12.0000i 0.456502i −0.973602 0.228251i \(-0.926699\pi\)
0.973602 0.228251i \(-0.0733006\pi\)
\(692\) 28.0000i 1.06440i
\(693\) 0 0
\(694\) 20.0000 20.0000i 0.759190 0.759190i
\(695\) 0 0
\(696\) 0 0
\(697\) 24.0000i 0.909065i
\(698\) 20.0000 + 20.0000i 0.757011 + 0.757011i
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000i 0.0755390i −0.999286 0.0377695i \(-0.987975\pi\)
0.999286 0.0377695i \(-0.0120253\pi\)
\(702\) 0 0
\(703\) 8.00000i 0.301726i
\(704\) −16.0000 −0.603023
\(705\) 0 0
\(706\) −6.00000 6.00000i −0.225813 0.225813i
\(707\) −40.0000 −1.50435
\(708\) 0 0
\(709\) 44.0000i 1.65245i 0.563337 + 0.826227i \(0.309517\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −8.00000 8.00000i −0.299813 0.299813i
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) −24.0000 + 24.0000i −0.895672 + 0.895672i
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 3.00000 3.00000i 0.111648 0.111648i
\(723\) 0 0
\(724\) −32.0000 −1.18927
\(725\) 0 0
\(726\) 0 0
\(727\) 40.0000i 1.48352i −0.670667 0.741759i \(-0.733992\pi\)
0.670667 0.741759i \(-0.266008\pi\)
\(728\) −48.0000 + 48.0000i −1.77900 + 1.77900i
\(729\) 0 0
\(730\) 0 0
\(731\) 24.0000i 0.887672i
\(732\) 0 0
\(733\) 6.00000 0.221615 0.110808 0.993842i \(-0.464656\pi\)
0.110808 + 0.993842i \(0.464656\pi\)
\(734\) 12.0000 + 12.0000i 0.442928 + 0.442928i
\(735\) 0 0
\(736\) −32.0000 32.0000i −1.17954 1.17954i
\(737\) 24.0000i 0.884051i
\(738\) 0 0
\(739\) 12.0000i 0.441427i 0.975339 + 0.220714i \(0.0708386\pi\)
−0.975339 + 0.220714i \(0.929161\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −40.0000 40.0000i −1.46845 1.46845i
\(743\) 48.0000i 1.76095i −0.474093 0.880475i \(-0.657224\pi\)
0.474093 0.880475i \(-0.342776\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 26.0000 26.0000i 0.951928 0.951928i
\(747\) 0 0
\(748\) 24.0000i 0.877527i
\(749\) 80.0000i 2.92314i
\(750\) 0 0
\(751\) −10.0000 −0.364905 −0.182453 0.983215i \(-0.558404\pi\)
−0.182453 + 0.983215i \(0.558404\pi\)
\(752\) 16.0000i 0.583460i
\(753\) 0 0
\(754\) −36.0000 36.0000i −1.31104 1.31104i
\(755\) 0 0
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) −12.0000 12.0000i −0.435860 0.435860i
\(759\) 0 0
\(760\) 0 0
\(761\) −8.00000 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(762\) 0 0
\(763\) 32.0000 1.15848
\(764\) 32.0000i 1.15772i
\(765\) 0 0
\(766\) 0 0
\(767\) 12.0000i 0.433295i
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −52.0000 −1.87152
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4.00000 + 4.00000i −0.143592 + 0.143592i
\(777\) 0 0
\(778\) 10.0000 + 10.0000i 0.358517 + 0.358517i
\(779\) 16.0000i 0.573259i
\(780\) 0 0
\(781\) 16.0000i 0.572525i
\(782\) 48.0000 48.0000i 1.71648 1.71648i
\(783\) 0 0
\(784\) 36.0000 1.28571
\(785\) 0 0
\(786\) 0 0
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) 28.0000i 0.997459i
\(789\) 0 0
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) 24.0000i 0.852265i
\(794\) −2.00000 + 2.00000i −0.0709773 + 0.0709773i
\(795\) 0 0
\(796\) 12.0000i 0.425329i
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) 0 0
\(802\) 24.0000 24.0000i 0.847469 0.847469i
\(803\) −20.0000 −0.705785
\(804\) 0 0
\(805\) 0 0
\(806\) 12.0000 12.0000i 0.422682 0.422682i
\(807\) 0 0
\(808\) 20.0000 20.0000i 0.703598 0.703598i
\(809\) 44.0000 1.54696 0.773479 0.633822i \(-0.218515\pi\)
0.773479 + 0.633822i \(0.218515\pi\)
\(810\) 0 0
\(811\) 52.0000i 1.82597i 0.407997 + 0.912983i \(0.366228\pi\)
−0.407997 + 0.912983i \(0.633772\pi\)
\(812\) 48.0000i 1.68447i
\(813\) 0 0
\(814\) 4.00000 + 4.00000i 0.140200 + 0.140200i
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000i 0.559769i
\(818\) 30.0000 30.0000i 1.04893 1.04893i
\(819\) 0 0
\(820\) 0 0
\(821\) 46.0000i 1.60541i 0.596376 + 0.802706i \(0.296607\pi\)
−0.596376 + 0.802706i \(0.703393\pi\)
\(822\) 0 0
\(823\) 48.0000i 1.67317i −0.547833 0.836587i \(-0.684547\pi\)
0.547833 0.836587i \(-0.315453\pi\)
\(824\) −16.0000 + 16.0000i −0.557386 + 0.557386i
\(825\) 0 0
\(826\) −8.00000 + 8.00000i −0.278356 + 0.278356i
\(827\) 16.0000 0.556375 0.278187 0.960527i \(-0.410266\pi\)
0.278187 + 0.960527i \(0.410266\pi\)
\(828\) 0 0
\(829\) 8.00000i 0.277851i −0.990303 0.138926i \(-0.955635\pi\)
0.990303 0.138926i \(-0.0443649\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 48.0000i 1.66410i
\(833\) 54.0000i 1.87099i
\(834\) 0 0
\(835\) 0 0
\(836\) 16.0000i 0.553372i
\(837\) 0 0
\(838\) 14.0000 + 14.0000i 0.483622 + 0.483622i
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 4.00000 + 4.00000i 0.137849 + 0.137849i
\(843\) 0 0
\(844\) 24.0000 0.826114
\(845\) 0 0
\(846\) 0 0
\(847\) 28.0000i 0.962091i
\(848\) 40.0000 1.37361
\(849\) 0 0
\(850\) 0 0
\(851\) 16.0000i 0.548473i
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 16.0000 16.0000i 0.547509 0.547509i
\(855\) 0 0
\(856\) −40.0000 40.0000i −1.36717 1.36717i
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 0 0
\(859\) 28.0000i 0.955348i 0.878537 + 0.477674i \(0.158520\pi\)
−0.878537 + 0.477674i \(0.841480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.0000i 1.22545i 0.790295 + 0.612727i \(0.209928\pi\)
−0.790295 + 0.612727i \(0.790072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −10.0000 10.0000i −0.339814 0.339814i
\(867\) 0 0
\(868\) −16.0000 −0.543075
\(869\) 4.00000i 0.135691i
\(870\) 0 0
\(871\) 72.0000 2.43963
\(872\) −16.0000 + 16.0000i −0.541828 + 0.541828i
\(873\) 0 0
\(874\) −32.0000 + 32.0000i −1.08242 + 1.08242i
\(875\) 0 0
\(876\) 0 0
\(877\) 10.0000 0.337676 0.168838 0.985644i \(-0.445999\pi\)
0.168838 + 0.985644i \(0.445999\pi\)
\(878\) −26.0000 + 26.0000i −0.877457 + 0.877457i
\(879\) 0 0
\(880\) 0 0
\(881\) 12.0000 0.404290 0.202145 0.979356i \(-0.435209\pi\)
0.202145 + 0.979356i \(0.435209\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 72.0000 2.42162
\(885\) 0 0
\(886\) 4.00000 4.00000i 0.134383 0.134383i
\(887\) 20.0000i 0.671534i 0.941945 + 0.335767i \(0.108996\pi\)
−0.941945 + 0.335767i \(0.891004\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 32.0000 1.07144
\(893\) −16.0000 −0.535420
\(894\) 0 0
\(895\) 0 0
\(896\) −32.0000 + 32.0000i −1.06904 + 1.06904i
\(897\) 0 0
\(898\) −24.0000 + 24.0000i −0.800890 + 0.800890i
\(899\) 12.0000i 0.400222i
\(900\) 0 0
\(901\) 60.0000i 1.99889i
\(902\) 8.00000 + 8.00000i 0.266371 + 0.266371i
\(903\) 0 0
\(904\) 12.0000 12.0000i 0.399114 0.399114i
\(905\) 0 0
\(906\) 0 0
\(907\) 4.00000 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(908\) 24.0000i 0.796468i
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 18.0000 + 18.0000i 0.595387 + 0.595387i
\(915\) 0 0
\(916\) 40.0000 1.32164
\(917\) 72.0000 2.37765
\(918\) 0 0
\(919\) 14.0000 0.461817 0.230909 0.972975i \(-0.425830\pi\)
0.230909 + 0.972975i \(0.425830\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2.00000 2.00000i −0.0658665 0.0658665i
\(923\) −48.0000 −1.57994
\(924\) 0 0
\(925\) 0 0
\(926\) 20.0000 + 20.0000i 0.657241 + 0.657241i
\(927\) 0 0
\(928\) −24.0000 24.0000i −0.787839 0.787839i
\(929\) −16.0000 −0.524943 −0.262471 0.964940i \(-0.584538\pi\)
−0.262471 + 0.964940i \(0.584538\pi\)
\(930\) 0 0
\(931\) 36.0000i 1.17985i
\(932\) 12.0000 0.393073
\(933\) 0 0
\(934\) 32.0000 32.0000i 1.04707 1.04707i
\(935\) 0 0
\(936\) 0 0
\(937\) 22.0000i 0.718709i −0.933201 0.359354i \(-0.882997\pi\)
0.933201 0.359354i \(-0.117003\pi\)
\(938\) −48.0000 48.0000i −1.56726 1.56726i
\(939\) 0 0
\(940\) 0 0
\(941\) 46.0000i 1.49956i −0.661689 0.749779i \(-0.730160\pi\)
0.661689 0.749779i \(-0.269840\pi\)
\(942\) 0 0
\(943\) 32.0000i 1.04206i
\(944\) 8.00000i 0.260378i
\(945\) 0 0
\(946\) −8.00000 8.00000i −0.260102 0.260102i
\(947\) −48.0000 −1.55979 −0.779895 0.625910i \(-0.784728\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(948\) 0 0
\(949\) 60.0000i 1.94768i
\(950\) 0 0
\(951\) 0 0
\(952\) −48.0000 48.0000i −1.55569 1.55569i
\(953\) 46.0000i 1.49009i 0.667016 + 0.745043i \(0.267571\pi\)
−0.667016 + 0.745043i \(0.732429\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 32.0000i 1.03495i
\(957\) 0 0
\(958\) 32.0000 32.0000i 1.03387 1.03387i
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −12.0000 + 12.0000i −0.386896 + 0.386896i
\(963\) 0 0
\(964\) 36.0000i 1.15948i
\(965\) 0 0
\(966\) 0 0
\(967\) 8.00000i 0.257263i 0.991692 + 0.128631i \(0.0410584\pi\)
−0.991692 + 0.128631i \(0.958942\pi\)
\(968\) −14.0000 14.0000i −0.449977 0.449977i
\(969\) 0 0
\(970\) 0 0
\(971\) 42.0000i 1.34784i −0.738802 0.673922i \(-0.764608\pi\)
0.738802 0.673922i \(-0.235392\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) 24.0000 + 24.0000i 0.769010 + 0.769010i
\(975\) 0 0
\(976\) 16.0000i 0.512148i
\(977\) 34.0000i 1.08776i 0.839164 + 0.543878i \(0.183045\pi\)
−0.839164 + 0.543878i \(0.816955\pi\)
\(978\) 0 0
\(979\) 8.00000i 0.255681i
\(980\) 0 0
\(981\) 0 0
\(982\) 34.0000 + 34.0000i 1.08498 + 1.08498i
\(983\) 16.0000i 0.510321i 0.966899 + 0.255160i \(0.0821283\pi\)
−0.966899 + 0.255160i \(0.917872\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 36.0000 36.0000i 1.14647 1.14647i
\(987\) 0 0
\(988\) −48.0000 −1.52708
\(989\) 32.0000i 1.01754i
\(990\) 0 0
\(991\) −46.0000 −1.46124 −0.730619 0.682785i \(-0.760768\pi\)
−0.730619 + 0.682785i \(0.760768\pi\)
\(992\) 8.00000 8.00000i 0.254000 0.254000i
\(993\) 0 0
\(994\) 32.0000 + 32.0000i 1.01498 + 1.01498i
\(995\) 0 0
\(996\) 0 0
\(997\) 46.0000 1.45683 0.728417 0.685134i \(-0.240256\pi\)
0.728417 + 0.685134i \(0.240256\pi\)
\(998\) −20.0000 20.0000i −0.633089 0.633089i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.d.g.1549.1 2
3.2 odd 2 1800.2.d.a.1549.2 2
4.3 odd 2 7200.2.d.b.2449.1 2
5.2 odd 4 360.2.k.c.181.2 yes 2
5.3 odd 4 1800.2.k.c.901.1 2
5.4 even 2 1800.2.d.e.1549.2 2
8.3 odd 2 7200.2.d.i.2449.1 2
8.5 even 2 1800.2.d.e.1549.1 2
12.11 even 2 7200.2.d.a.2449.1 2
15.2 even 4 360.2.k.a.181.1 2
15.8 even 4 1800.2.k.i.901.2 2
15.14 odd 2 1800.2.d.j.1549.1 2
20.3 even 4 7200.2.k.a.3601.1 2
20.7 even 4 1440.2.k.c.721.2 2
20.19 odd 2 7200.2.d.i.2449.2 2
24.5 odd 2 1800.2.d.j.1549.2 2
24.11 even 2 7200.2.d.h.2449.1 2
40.3 even 4 7200.2.k.a.3601.2 2
40.13 odd 4 1800.2.k.c.901.2 2
40.19 odd 2 7200.2.d.b.2449.2 2
40.27 even 4 1440.2.k.c.721.1 2
40.29 even 2 inner 1800.2.d.g.1549.2 2
40.37 odd 4 360.2.k.c.181.1 yes 2
60.23 odd 4 7200.2.k.c.3601.2 2
60.47 odd 4 1440.2.k.b.721.1 2
60.59 even 2 7200.2.d.h.2449.2 2
120.29 odd 2 1800.2.d.a.1549.1 2
120.53 even 4 1800.2.k.i.901.1 2
120.59 even 2 7200.2.d.a.2449.2 2
120.77 even 4 360.2.k.a.181.2 yes 2
120.83 odd 4 7200.2.k.c.3601.1 2
120.107 odd 4 1440.2.k.b.721.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.k.a.181.1 2 15.2 even 4
360.2.k.a.181.2 yes 2 120.77 even 4
360.2.k.c.181.1 yes 2 40.37 odd 4
360.2.k.c.181.2 yes 2 5.2 odd 4
1440.2.k.b.721.1 2 60.47 odd 4
1440.2.k.b.721.2 2 120.107 odd 4
1440.2.k.c.721.1 2 40.27 even 4
1440.2.k.c.721.2 2 20.7 even 4
1800.2.d.a.1549.1 2 120.29 odd 2
1800.2.d.a.1549.2 2 3.2 odd 2
1800.2.d.e.1549.1 2 8.5 even 2
1800.2.d.e.1549.2 2 5.4 even 2
1800.2.d.g.1549.1 2 1.1 even 1 trivial
1800.2.d.g.1549.2 2 40.29 even 2 inner
1800.2.d.j.1549.1 2 15.14 odd 2
1800.2.d.j.1549.2 2 24.5 odd 2
1800.2.k.c.901.1 2 5.3 odd 4
1800.2.k.c.901.2 2 40.13 odd 4
1800.2.k.i.901.1 2 120.53 even 4
1800.2.k.i.901.2 2 15.8 even 4
7200.2.d.a.2449.1 2 12.11 even 2
7200.2.d.a.2449.2 2 120.59 even 2
7200.2.d.b.2449.1 2 4.3 odd 2
7200.2.d.b.2449.2 2 40.19 odd 2
7200.2.d.h.2449.1 2 24.11 even 2
7200.2.d.h.2449.2 2 60.59 even 2
7200.2.d.i.2449.1 2 8.3 odd 2
7200.2.d.i.2449.2 2 20.19 odd 2
7200.2.k.a.3601.1 2 20.3 even 4
7200.2.k.a.3601.2 2 40.3 even 4
7200.2.k.c.3601.1 2 120.83 odd 4
7200.2.k.c.3601.2 2 60.23 odd 4