Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 114 x^{2} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.0415583827317$, $\pm0.958441617268$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{58})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3368$ | $11343424$ | $42180242600$ | $146684265923584$ | $511116752925873128$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3254$ | $205380$ | $12105294$ | $714924300$ | $42179951558$ | $2488651484820$ | $146830413255454$ | $8662995818654940$ | $511116752551104854$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=2 x^5+40 x^4+29 x^3+14 x^2+2 x+18$
- $y^2=8 x^6+36 x^5+22 x^4+7 x^2+30 x+39$
- $y^2=6 x^6+42 x^5+31 x^4+41 x^3+55 x^2+55 x+40$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{58})\). |
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.aek 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-58}) \)$)$ |
Base change
This is a primitive isogeny class.