Learn more

Refine search


Results (1-50 of 811 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
12.4.7556814453125.1 $x^{12} - 2 x^{11} - 5 x^{10} + 9 x^{9} + 10 x^{8} - 14 x^{7} - 3 x^{6} + 2 x^{5} - 6 x^{4} + 6 x^{3} - 2 x^{2} + 4 x + 1$ $5^{9}\cdot 7^{2}\cdot 281^{2}$ $S_4^2:C_4$ (as 12T237) trivial $46.1267786085$
12.4.11278142578125.1 $x^{12} - x^{11} - 4 x^{10} + 7 x^{9} - 11 x^{7} + 7 x^{6} + 8 x^{5} - 6 x^{4} + 2 x^{3} + 17 x^{2} + 10 x + 1$ $3^{6}\cdot 5^{9}\cdot 89^{2}$ $S_3^2:C_4$ (as 12T79) trivial $60.3421704761$
12.8.51942673828125.1 $x^{12} - 2 x^{11} - 6 x^{10} + 11 x^{9} + 15 x^{8} - 17 x^{7} - 27 x^{6} + 4 x^{5} + 29 x^{4} + 4 x^{3} - 12 x^{2} + 1$ $3^{6}\cdot 5^{9}\cdot 191^{2}$ $S_3^2:C_4$ (as 12T79) trivial $245.622566038$
12.2.55916310546875.1 $x^{12} - 4 x^{11} + 8 x^{10} - 9 x^{9} - 2 x^{8} + 2 x^{7} + 29 x^{6} - 39 x^{5} + x^{4} + 2 x^{3} + 8 x^{2} + 3 x - 9$ $-\,5^{9}\cdot 31^{5}$ $D_{12}$ (as 12T12) trivial $133.406775563$
12.2.80525500000000.1 $x^{12} - 3 x^{11} + 3 x^{10} + 8 x^{9} - 9 x^{8} - x^{7} + 14 x^{6} + 3 x^{5} + 3 x^{4} + 24 x^{3} + 23 x^{2} + 9 x + 1$ $-\,2^{8}\cdot 5^{9}\cdot 11^{5}$ $D_{12}$ (as 12T12) trivial $165.101772087$
12.8.264764548828125.1 $x^{12} - 3 x^{11} - 3 x^{10} + 13 x^{9} + 3 x^{8} - 16 x^{7} - 19 x^{6} + 23 x^{5} + 41 x^{4} - 61 x^{3} - 3 x^{2} + 44 x - 19$ $3^{2}\cdot 5^{9}\cdot 3881^{2}$ $S_4^2:C_4$ (as 12T237) trivial $628.571652529$
12.8.326521931640625.1 $x^{12} - 3 x^{11} - 2 x^{10} + 7 x^{9} - 3 x^{8} + 24 x^{7} - 18 x^{6} - 19 x^{5} + 22 x^{4} - 21 x^{3} + 20 x^{2} - 8 x + 1$ $5^{9}\cdot 7^{8}\cdot 29$ $C_2\wr C_6$ (as 12T134) trivial $659.3786067574857$
12.12.551709470703125.1 $x^{12} - x^{11} - 12 x^{10} + 11 x^{9} + 54 x^{8} - 43 x^{7} - 113 x^{6} + 71 x^{5} + 110 x^{4} - 46 x^{3} - 40 x^{2} + 8 x + 1$ $5^{9}\cdot 7^{10}$ $C_{12}$ (as 12T1) trivial $1656.08671936$
12.12.756680642578125.1 $x^{12} - 12 x^{10} - x^{9} + 54 x^{8} + 9 x^{7} - 112 x^{6} - 27 x^{5} + 105 x^{4} + 31 x^{3} - 36 x^{2} - 12 x + 1$ $3^{18}\cdot 5^{9}$ $C_{12}$ (as 12T1) trivial $2075.03148059$
12.2.839808000000000.1 $x^{12} - 2 x^{11} + 3 x^{10} - 8 x^{9} + 16 x^{8} - 34 x^{7} + 29 x^{6} - 8 x^{5} + 8 x^{4} - 14 x^{3} + 3 x^{2} - 4 x + 1$ $-\,2^{16}\cdot 3^{8}\cdot 5^{9}$ $(C_3^2\times S_3^2):C_4$ (as 12T209) trivial $744.690680414$
12.0.885780500000000.1 $x^{12} - x^{11} - 2 x^{10} + 11 x^{9} + 4 x^{8} - 43 x^{7} + 17 x^{6} + 66 x^{5} - 90 x^{4} - 6 x^{3} + 100 x^{2} - 72 x + 16$ $2^{8}\cdot 5^{9}\cdot 11^{6}$ $D_{12}$ (as 12T12) $[4]$ $343.095833247$
12.0.1733405626953125.1 $x^{12} - 4 x^{11} + 12 x^{10} - 14 x^{9} - 4 x^{8} + 37 x^{7} - 44 x^{6} - 54 x^{5} + 268 x^{4} - 428 x^{3} + 402 x^{2} - 252 x + 81$ $5^{9}\cdot 31^{6}$ $D_{12}$ (as 12T12) $[4]$ $277.230875502$
12.8.3192864500000000.1 $x^{12} - 5 x^{11} + 2 x^{10} + 18 x^{9} - 41 x^{8} + 52 x^{7} + 7 x^{6} - 114 x^{5} + 105 x^{4} - 2 x^{3} - 24 x^{2} + x + 1$ $2^{8}\cdot 5^{9}\cdot 7^{2}\cdot 19^{4}$ $A_4^2:C_4$ (as 12T159) trivial $2293.41440984$
12.8.3531579275390625.1 $x^{12} - 7 x^{10} - 4 x^{9} + 14 x^{8} + 21 x^{7} - 2 x^{6} - 28 x^{5} - 20 x^{4} + 4 x^{3} + 14 x^{2} + 7 x + 1$ $3^{6}\cdot 5^{9}\cdot 29\cdot 31^{2}\cdot 89$ $S_3\wr C_4$ (as 12T264) trivial $2512.55345376$
12.12.4663778923828125.1 $x^{12} - x^{11} - 12 x^{10} + 9 x^{9} + 53 x^{8} - 27 x^{7} - 106 x^{6} + 34 x^{5} + 96 x^{4} - 17 x^{3} - 32 x^{2} + 2 x + 1$ $3^{6}\cdot 5^{9}\cdot 29\cdot 179\cdot 631$ $S_3\wr C_4$ (as 12T264) trivial $5490.17233206$
12.12.4961330525390625.1 $x^{12} - 5 x^{11} - x^{10} + 34 x^{9} - 19 x^{8} - 83 x^{7} + 50 x^{6} + 92 x^{5} - 37 x^{4} - 47 x^{3} + 6 x^{2} + 9 x + 1$ $3^{6}\cdot 5^{9}\cdot 3484501$ $S_3\wr C_4$ (as 12T264) trivial $5929.96351848$
12.12.8208085798828125.1 $x^{12} - x^{11} - 22 x^{10} + 14 x^{9} + 153 x^{8} - 62 x^{7} - 396 x^{6} + 84 x^{5} + 361 x^{4} - 87 x^{3} - 112 x^{2} + 37 x + 1$ $3^{6}\cdot 5^{9}\cdot 7^{8}$ $C_{12}$ (as 12T1) trivial $7868.47835349$
12.8.9138614080078125.1 $x^{12} - x^{11} - 3 x^{10} + 9 x^{9} - 9 x^{8} - 32 x^{7} + 21 x^{6} + 59 x^{5} + 8 x^{4} - 42 x^{3} - 23 x^{2} + 2 x + 1$ $3^{2}\cdot 5^{9}\cdot 151^{4}$ $A_4^2:C_4$ (as 12T159) trivial $5403.8323885$
12.12.21445928455078125.1 $x^{12} - 3 x^{11} - 18 x^{10} + 52 x^{9} + 94 x^{8} - 279 x^{7} - 122 x^{6} + 452 x^{5} + 25 x^{4} - 228 x^{3} + 30 x^{2} + 36 x - 9$ $3^{6}\cdot 5^{9}\cdot 3881^{2}$ $S_3^2:C_4$ (as 12T79) trivial $13482.0819399$
12.12.26436901658203125.1 $x^{12} - 2 x^{11} - 17 x^{10} + 28 x^{9} + 102 x^{8} - 114 x^{7} - 268 x^{6} + 144 x^{5} + 252 x^{4} - 54 x^{3} - 55 x^{2} - 2 x + 1$ $3^{6}\cdot 5^{9}\cdot 31^{2}\cdot 139^{2}$ $S_3^2:C_4$ (as 12T79) trivial $16295.3925214$
12.4.42684757595703125.1 $x^{12} - x^{11} - 2 x^{10} + 9 x^{9} - 7 x^{8} - 12 x^{7} + 24 x^{6} - x^{5} - 14 x^{4} - 7 x^{3} + 3 x^{2} + 7 x + 1$ $5^{9}\cdot 7^{6}\cdot 431^{2}$ $A_5^2:C_4$ (as 12T278) $[2]$ $1929.27333365$
12.12.47502004500000000.1 $x^{12} - x^{11} - 23 x^{10} + 19 x^{9} + 161 x^{8} - 122 x^{7} - 369 x^{6} + 334 x^{5} + 163 x^{4} - 167 x^{3} - 8 x^{2} + 12 x + 1$ $2^{8}\cdot 3^{6}\cdot 5^{9}\cdot 19^{4}$ $C_3\times (C_3 : C_4)$ (as 12T19) trivial $20063.9174821$
12.8.62306284500000000.1 $x^{12} - 3 x^{11} + 7 x^{10} + 13 x^{9} - 77 x^{8} + 4 x^{7} + 161 x^{6} - 72 x^{5} - 89 x^{4} + 109 x^{3} + 22 x^{2} - 16 x + 1$ $2^{8}\cdot 3^{2}\cdot 5^{9}\cdot 61^{4}$ $A_4^2:C_4$ (as 12T159) trivial $13534.481903374366$
12.8.193710244500000000.2 $x^{12} - 3 x^{10} - 2 x^{9} - 36 x^{8} - 48 x^{7} + 92 x^{6} + 216 x^{5} + 225 x^{4} + 248 x^{3} + 216 x^{2} + 96 x + 16$ $2^{8}\cdot 3^{18}\cdot 5^{9}$ $C_3:S_3^3:C_4$ (as 12T245) trivial $19433.1189468$
12.8.289369624500000000.1 $x^{12} - 3 x^{11} + 9 x^{10} + 19 x^{9} - 75 x^{8} + 192 x^{7} - 187 x^{6} - 204 x^{5} + 279 x^{4} + 11 x^{3} - 42 x^{2} + 1$ $2^{8}\cdot 3^{14}\cdot 5^{9}\cdot 11^{2}$ $C_3:S_3^3:C_4$ (as 12T245) trivial $23766.397630604413$
12.0.300342961072265625.2 $x^{12} - 5 x^{11} + 19 x^{10} - 54 x^{9} + 116 x^{8} - 217 x^{7} + 305 x^{6} - 297 x^{5} + 258 x^{4} - 238 x^{3} + 221 x^{2} - 109 x + 41$ $3^{8}\cdot 5^{9}\cdot 29^{3}\cdot 31^{2}$ $(C_3^2\times S_3^2):C_4$ (as 12T209) $[2]$ $5193.55523784$
12.0.435848050125000000.1 $x^{12} + 3 x^{10} - x^{9} - 21 x^{8} + 84 x^{7} - 12 x^{6} + 318 x^{5} + 285 x^{4} - 1184 x^{3} + 1149 x^{2} - 1137 x + 971$ $2^{6}\cdot 3^{20}\cdot 5^{9}$ $C_3\times S_4$ (as 12T45) $[8]$ $1362.5474857609888$
12.8.123...625.1 $x^{12} - x^{11} - 14 x^{10} + 37 x^{9} - 20 x^{8} - 276 x^{7} + 87 x^{6} + 408 x^{5} + 69 x^{4} + 72 x^{3} - 143 x^{2} - 120 x + 16$ $5^{9}\cdot 229^{5}$ $C_4:S_4$ (as 12T54) $[2]$ $37171.8222915$
12.0.225...000.1 $x^{12} + 35 x^{10} + 455 x^{8} + 2800 x^{6} + 8575 x^{4} + 12250 x^{2} + 6125$ $2^{12}\cdot 5^{9}\cdot 7^{10}$ $C_{12}$ (as 12T1) $[2, 26]$ $104.882003477$
12.12.241...125.1 $x^{12} - 3 x^{11} - 28 x^{10} + 98 x^{9} + 233 x^{8} - 1071 x^{7} - 374 x^{6} + 4658 x^{5} - 2354 x^{4} - 7196 x^{3} + 6782 x^{2} + 1684 x - 2399$ $3^{6}\cdot 5^{9}\cdot 7^{4}\cdot 29^{4}$ $C_6.D_6$ (as 12T39) trivial $163746.298789$
12.12.295...000.1 $x^{12} - 4 x^{11} - 32 x^{10} + 124 x^{9} + 339 x^{8} - 1252 x^{7} - 1458 x^{6} + 4864 x^{5} + 2480 x^{4} - 6484 x^{3} - 1580 x^{2} + 2052 x - 239$ $2^{18}\cdot 5^{9}\cdot 7^{8}$ $C_{12}$ (as 12T1) trivial $193697.65851$
12.0.295...000.1 $x^{12} - 4 x^{11} + 28 x^{10} - 76 x^{9} + 359 x^{8} - 772 x^{7} + 2662 x^{6} - 4216 x^{5} + 11540 x^{4} - 13284 x^{3} + 37260 x^{2} - 26468 x + 52681$ $2^{18}\cdot 5^{9}\cdot 7^{8}$ $C_{12}$ (as 12T1) $[146]$ $104.882003477$
12.0.309...000.1 $x^{12} + 30 x^{10} + 315 x^{8} + 1500 x^{6} + 3375 x^{4} + 3375 x^{2} + 1125$ $2^{12}\cdot 3^{18}\cdot 5^{9}$ $C_{12}$ (as 12T1) $[10, 10]$ $201.000834787$
12.12.989...125.1 $x^{12} - 3 x^{11} - 36 x^{10} + 106 x^{9} + 393 x^{8} - 1164 x^{7} - 1350 x^{6} + 4794 x^{5} + 441 x^{4} - 6643 x^{3} + 1926 x^{2} + 2865 x - 1349$ $3^{16}\cdot 5^{9}\cdot 7^{6}$ $C_{12}$ (as 12T1) trivial $413348.51768$
12.12.110...125.1 $x^{12} - 42 x^{10} - 19 x^{9} + 639 x^{8} + 531 x^{7} - 4122 x^{6} - 4653 x^{5} + 9900 x^{4} + 13904 x^{3} - 4356 x^{2} - 11253 x - 3509$ $3^{18}\cdot 5^{9}\cdot 11^{4}$ $C_3^2:C_{12}$ (as 12T73) trivial $387641.416817$
12.12.131...125.1 $x^{12} - x^{11} - 33 x^{10} + 31 x^{9} + 407 x^{8} - 342 x^{7} - 2337 x^{6} + 1623 x^{5} + 6392 x^{4} - 3122 x^{3} - 7965 x^{2} + 1986 x + 3691$ $3^{4}\cdot 5^{9}\cdot 7^{6}\cdot 29^{4}$ $C_6.D_6$ (as 12T39) trivial $472938.685831$
12.0.220...000.1 $x^{12} + 18 x^{10} - 4 x^{9} + 234 x^{8} + 36 x^{7} + 1738 x^{6} + 72 x^{5} + 8355 x^{4} + 3624 x^{3} + 40764 x^{2} + 21732 x + 70471$ $2^{18}\cdot 3^{16}\cdot 5^{9}$ $C_{12}$ (as 12T1) $[218]$ $201.000834787$
12.12.220...000.1 $x^{12} - 42 x^{10} - 4 x^{9} + 594 x^{8} + 36 x^{7} - 3382 x^{6} + 432 x^{5} + 7215 x^{4} - 2696 x^{3} - 3576 x^{2} + 1332 x - 109$ $2^{18}\cdot 3^{16}\cdot 5^{9}$ $C_{12}$ (as 12T1) trivial $285279.649624$
12.12.241...125.1 $x^{12} - x^{11} - 38 x^{10} + 46 x^{9} + 447 x^{8} - 632 x^{7} - 1642 x^{6} + 2478 x^{5} + 1037 x^{4} - 1617 x^{3} - 330 x^{2} + 251 x + 31$ $3^{6}\cdot 5^{9}\cdot 19^{8}$ $C_{12}$ (as 12T1) trivial $457836.50034$
12.0.336...000.1 $x^{12} - 4 x^{11} + 43 x^{10} - 126 x^{9} + 814 x^{8} - 1852 x^{7} + 8517 x^{6} - 14386 x^{5} + 51505 x^{4} - 61084 x^{3} + 200870 x^{2} - 138098 x + 354061$ $2^{12}\cdot 3^{6}\cdot 5^{9}\cdot 7^{8}$ $C_{12}$ (as 12T1) $[2, 194]$ $104.882003477$
12.0.543...125.1 $x^{12} - x^{11} + 38 x^{10} - 6 x^{9} + 713 x^{8} + 278 x^{7} + 8204 x^{6} + 4344 x^{5} + 62061 x^{4} + 12933 x^{3} + 275688 x^{2} + 17977 x + 557801$ $5^{9}\cdot 7^{8}\cdot 13^{6}$ $C_{12}$ (as 12T1) $[2, 2, 74]$ $104.882003477$
12.0.986...125.1 $x^{12} - 3 x^{11} + 24 x^{10} - 24 x^{9} + 273 x^{8} - 114 x^{7} + 1520 x^{6} - 336 x^{5} + 5496 x^{4} - 363 x^{3} + 10686 x^{2} - 2670 x + 7921$ $3^{18}\cdot 5^{9}\cdot 19^{4}$ $C_2^4:C_{12}$ (as 12T99) $[2, 4, 4]$ $3153.9783425305222$
12.0.228...000.1 $x^{12} + 12 x^{10} - 12 x^{9} + 54 x^{8} - 108 x^{7} + 192 x^{6} - 324 x^{5} + 585 x^{4} - 532 x^{3} + 756 x^{2} - 624 x + 656$ $2^{18}\cdot 3^{12}\cdot 5^{9}\cdot 29^{2}$ $C_3:S_3^3:C_4$ (as 12T245) $[2]$ $70306.32457498257$
12.0.271...125.1 $x^{12} - x^{11} + 53 x^{10} - 11 x^{9} + 1303 x^{8} + 438 x^{7} + 18804 x^{6} + 9784 x^{5} + 170686 x^{4} + 49088 x^{3} + 900838 x^{2} + 99987 x + 2139101$ $5^{9}\cdot 7^{8}\cdot 17^{6}$ $C_{12}$ (as 12T1) $[962]$ $104.882003477$
12.0.405...125.1 $x^{12} - 3 x^{11} + 39 x^{10} - 111 x^{9} + 825 x^{8} - 2268 x^{7} + 11158 x^{6} - 24144 x^{5} + 86724 x^{4} - 123364 x^{3} + 373878 x^{2} - 349125 x + 845101$ $3^{16}\cdot 5^{9}\cdot 13^{6}$ $C_{12}$ (as 12T1) $[914]$ $201.000834787$
12.0.487...000.1 $x^{12} + 12 x^{10} - 8 x^{9} + 54 x^{8} - 72 x^{7} + 192 x^{6} - 216 x^{5} + 585 x^{4} - 488 x^{3} + 756 x^{2} - 816 x + 576$ $2^{6}\cdot 3^{8}\cdot 5^{9}\cdot 29^{6}$ $C_3:S_3^3:C_4$ (as 12T247) $[8]$ $2040263.73226$
12.0.977...125.1 $x^{12} - x^{11} + 93 x^{10} - 94 x^{9} + 3204 x^{8} - 3298 x^{7} + 52912 x^{6} - 59464 x^{5} + 463265 x^{4} - 537436 x^{3} + 2225015 x^{2} - 1732597 x + 5417371$ $5^{9}\cdot 7^{10}\cdot 11^{6}$ $C_{12}$ (as 12T1) $[2, 2, 628]$ $104.882003477$
12.12.121...125.1 $x^{12} - x^{11} - 54 x^{10} + 58 x^{9} + 948 x^{8} - 1163 x^{7} - 6275 x^{6} + 7932 x^{5} + 14751 x^{4} - 15011 x^{3} - 15281 x^{2} + 8215 x + 5851$ $3^{6}\cdot 5^{9}\cdot 31^{8}$ $C_{12}$ (as 12T1) trivial $5165196.85962$
12.0.134...125.1 $x^{12} + 78 x^{10} - x^{9} + 2079 x^{8} - 441 x^{7} + 25088 x^{6} - 15957 x^{5} + 152430 x^{4} - 166064 x^{3} + 599634 x^{2} - 332247 x + 1522711$ $3^{18}\cdot 5^{9}\cdot 11^{6}$ $C_{12}$ (as 12T1) $[2, 2, 458]$ $201.000834787$
12.12.166...125.1 $x^{12} - x^{11} - 97 x^{10} + 39 x^{9} + 3503 x^{8} + 188 x^{7} - 58846 x^{6} - 22116 x^{5} + 469536 x^{4} + 268488 x^{3} - 1560312 x^{2} - 899663 x + 1333151$ $5^{9}\cdot 7^{8}\cdot 23^{6}$ $C_{12}$ (as 12T1) trivial $3414742.12191$
Next   displayed columns for results