Normalized defining polynomial
\( x^{12} - x^{11} + 93 x^{10} - 94 x^{9} + 3204 x^{8} - 3298 x^{7} + 52912 x^{6} - 59464 x^{5} + 463265 x^{4} - 537436 x^{3} + 2225015 x^{2} - 1732597 x + 5417371 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(977386981628298828125=5^{9}\cdot 7^{10}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(385=5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{385}(1,·)$, $\chi_{385}(307,·)$, $\chi_{385}(362,·)$, $\chi_{385}(331,·)$, $\chi_{385}(208,·)$, $\chi_{385}(254,·)$, $\chi_{385}(144,·)$, $\chi_{385}(309,·)$, $\chi_{385}(87,·)$, $\chi_{385}(153,·)$, $\chi_{385}(221,·)$, $\chi_{385}(318,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{370649} a^{10} - \frac{23894}{370649} a^{9} - \frac{17651}{370649} a^{8} - \frac{139036}{370649} a^{7} + \frac{74842}{370649} a^{6} - \frac{89719}{370649} a^{5} + \frac{165119}{370649} a^{4} + \frac{108991}{370649} a^{3} - \frac{129367}{370649} a^{2} + \frac{159828}{370649} a - \frac{44589}{370649}$, $\frac{1}{4243842870369648435596281} a^{11} - \frac{946103373349699283}{4243842870369648435596281} a^{10} - \frac{133818581127273460436354}{4243842870369648435596281} a^{9} + \frac{543404142346153957378418}{4243842870369648435596281} a^{8} - \frac{508293486824396154608461}{4243842870369648435596281} a^{7} - \frac{741796413009244306931070}{4243842870369648435596281} a^{6} + \frac{672060923046554189788278}{4243842870369648435596281} a^{5} - \frac{1193507682828028010522787}{4243842870369648435596281} a^{4} - \frac{2088313178844149381573335}{4243842870369648435596281} a^{3} + \frac{1119885607711837818402689}{4243842870369648435596281} a^{2} - \frac{550266005301090476024873}{4243842870369648435596281} a + \frac{194961007993651595}{783376820669961211}$
Class group and class number
$C_{2}\times C_{2}\times C_{628}$, which has order $2512$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.741125.2, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |