Normalized defining polynomial
\( x^{12} + 12 x^{10} - 12 x^{9} + 54 x^{8} - 108 x^{7} + 192 x^{6} - 324 x^{5} + 585 x^{4} - 532 x^{3} + \cdots + 656 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(228834243072000000000\)
\(\medspace = 2^{18}\cdot 3^{12}\cdot 5^{9}\cdot 29^{2}\)
|
| |
| Root discriminant: | \(49.73\) |
| |
| Galois root discriminant: | $2^{3/2}3^{25/18}5^{3/4}29^{1/2}\approx 234.22859052096263$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 4.0.8000.2 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{2}$, $\frac{1}{8}a^{7}-\frac{1}{8}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{8}-\frac{1}{8}a^{4}-\frac{1}{2}a$, $\frac{1}{232}a^{9}+\frac{9}{232}a^{7}+\frac{11}{116}a^{6}+\frac{27}{232}a^{5}+\frac{2}{29}a^{4}+\frac{47}{232}a^{3}+\frac{41}{116}a^{2}+\frac{15}{58}a+\frac{1}{29}$, $\frac{1}{464}a^{10}+\frac{9}{464}a^{8}+\frac{11}{232}a^{7}+\frac{27}{464}a^{6}-\frac{25}{116}a^{5}+\frac{47}{464}a^{4}-\frac{17}{232}a^{3}-\frac{43}{116}a^{2}+\frac{1}{58}a$, $\frac{1}{464}a^{11}-\frac{1}{464}a^{9}+\frac{11}{232}a^{8}-\frac{5}{464}a^{7}+\frac{7}{116}a^{6}+\frac{9}{464}a^{5}+\frac{19}{232}a^{4}-\frac{1}{116}a^{3}-\frac{1}{2}a^{2}-\frac{17}{58}a-\frac{5}{29}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{116}a^{9}+\frac{9}{116}a^{7}-\frac{7}{116}a^{6}+\frac{27}{116}a^{5}-\frac{21}{58}a^{4}+\frac{47}{116}a^{3}-\frac{63}{116}a^{2}+\frac{15}{29}a+\frac{2}{29}$, $\frac{1}{464}a^{11}+\frac{11}{464}a^{10}+\frac{21}{464}a^{9}+\frac{121}{464}a^{8}+\frac{1}{16}a^{7}+\frac{345}{464}a^{6}-\frac{497}{464}a^{5}+\frac{443}{464}a^{4}-\frac{513}{232}a^{3}+\frac{279}{58}a^{2}+\frac{65}{29}a+\frac{209}{29}$, $\frac{3}{464}a^{11}+\frac{7}{464}a^{10}-\frac{33}{464}a^{9}+\frac{113}{464}a^{8}-\frac{155}{464}a^{7}+\frac{589}{464}a^{6}-\frac{539}{464}a^{5}+\frac{1379}{464}a^{4}-\frac{611}{232}a^{3}+\frac{139}{29}a^{2}-\frac{48}{29}a+\frac{142}{29}$, $\frac{15}{464}a^{11}-\frac{7}{58}a^{10}+\frac{215}{464}a^{9}-\frac{13}{8}a^{8}+\frac{1691}{464}a^{7}-\frac{245}{29}a^{6}+\frac{7769}{464}a^{5}-\frac{6325}{232}a^{4}+\frac{9459}{232}a^{3}-\frac{6275}{116}a^{2}+\frac{2719}{58}a-\frac{685}{29}$, $\frac{273}{232}a^{11}+\frac{4223}{464}a^{10}+\frac{865}{116}a^{9}+\frac{25253}{464}a^{8}-\frac{20811}{232}a^{7}+\frac{63973}{464}a^{6}-\frac{22471}{58}a^{5}+\frac{385347}{464}a^{4}-\frac{19593}{29}a^{3}+\frac{130243}{116}a^{2}-\frac{66625}{58}a+\frac{38829}{29}$
|
| |
| Regulator: | \( 70306.32457498257 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 70306.32457498257 \cdot 2}{2\cdot\sqrt{228834243072000000000}}\cr\approx \mathstrut & 0.285965142410099 \end{aligned}\]
Galois group
$C_3:S_3^3:C_4$ (as 12T245):
| A solvable group of order 2592 |
| The 30 conjugacy class representatives for $C_3:S_3^3:C_4$ |
| Character table for $C_3:S_3^3:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.8000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.12.0.1}{12} }$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | R | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{5}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.4.0.1}{4} }^{3}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.6a1.6 | $x^{4} + 2 x^{3} + 7 x^{2} + 14 x + 7$ | $2$ | $2$ | $6$ | $C_4$ | $$[3]^{2}$$ |
| 2.4.2.12a1.9 | $x^{8} + 2 x^{5} + 6 x^{4} + x^{2} + 6 x + 7$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $$[3]^{4}$$ | |
|
\(3\)
| 3.4.3.12a14.1 | $x^{12} + 6 x^{11} + 12 x^{10} + 8 x^{9} + 6 x^{8} + 30 x^{7} + 42 x^{6} + 12 x^{5} + 15 x^{4} + 42 x^{3} + 12 x^{2} + 17$ | $3$ | $4$ | $12$ | 12T41 | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{4}$$ |
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(29\)
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.3.1.0a1.1 | $x^{3} + 2 x + 27$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 29.3.1.0a1.1 | $x^{3} + 2 x + 27$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |