Properties

Label 5.3.4.9a1.1
Base \(\Q_{5}\)
Degree \(12\)
e \(4\)
f \(3\)
c \(9\)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + 3 x + 3 )^{4} + 5 x^{2}$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $12$
Ramification index $e$: $4$
Residue field degree $f$: $3$
Discriminant exponent $c$: $9$
Discriminant root field: $\Q_{5}(\sqrt{5})$
Root number: $-1$
$\Aut(K/\Q_{5})$ $=$$\Gal(K/\Q_{5})$: $C_{12}$
This field is Galois and abelian over $\Q_{5}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$124 = (5^{ 3 } - 1)$

Intermediate fields

$\Q_{5}(\sqrt{5})$, 5.3.1.0a1.1, 5.1.4.3a1.4, 5.3.2.3a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.3.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{3} + 3 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 5 t^{2} \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 4 z^2 + z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $12$
Galois group: $C_{12}$ (as 12T1)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Galois unramified degree: $3$
Galois tame degree: $4$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.75$
Galois splitting model:$x^{12} - x^{11} - 12 x^{10} + 11 x^{9} + 54 x^{8} - 43 x^{7} - 113 x^{6} + 71 x^{5} + 110 x^{4} - 46 x^{3} - 40 x^{2} + 8 x + 1$