Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $1$ | |
| Group : | $C_{12}$ | |
| CHM label : | $C(4)[x]C(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $1$ | |
| Generators: | (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $12$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 4: $C_4$ 6: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: $C_4$
Degree 6: $C_6$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 12 $ | $1$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12)$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
| $ 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
| $ 12 $ | $1$ | $12$ | $( 1, 6,11, 4, 9, 2, 7,12, 5,10, 3, 8)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 12 $ | $1$ | $12$ | $( 1, 8, 3,10, 5,12, 7, 2, 9, 4,11, 6)$ |
| $ 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 4, 4, 4 $ | $1$ | $4$ | $( 1,10, 7, 4)( 2,11, 8, 5)( 3,12, 9, 6)$ |
| $ 6, 6 $ | $1$ | $6$ | $( 1,11, 9, 7, 5, 3)( 2,12,10, 8, 6, 4)$ |
| $ 12 $ | $1$ | $12$ | $( 1,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
Group invariants
| Order: | $12=2^{2} \cdot 3$ | |
| Cyclic: | Yes | |
| Abelian: | Yes | |
| Solvable: | Yes | |
| GAP id: | [12, 2] |
| Character table: |
2 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 1
1a 12a 6a 4a 3a 12b 2a 12c 3b 4b 6b 12d
2P 1a 6a 3a 2a 3b 6b 1a 6a 3a 2a 3b 6b
3P 1a 4a 2a 4b 1a 4a 2a 4b 1a 4a 2a 4b
5P 1a 12b 6b 4a 3b 12a 2a 12d 3a 4b 6a 12c
7P 1a 12c 6a 4b 3a 12d 2a 12a 3b 4a 6b 12b
11P 1a 12d 6b 4b 3b 12c 2a 12b 3a 4a 6a 12a
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
X.3 1 A -/A -1 -A /A 1 A -/A -1 -A /A
X.4 1 /A -A -1 -/A A 1 /A -A -1 -/A A
X.5 1 -/A -A 1 -/A -A 1 -/A -A 1 -/A -A
X.6 1 -A -/A 1 -A -/A 1 -A -/A 1 -A -/A
X.7 1 B -1 -B 1 B -1 -B 1 B -1 -B
X.8 1 -B -1 B 1 -B -1 B 1 -B -1 B
X.9 1 C /A -B -A -/C -1 -C -/A B A /C
X.10 1 -/C A -B -/A C -1 /C -A B /A -C
X.11 1 /C A B -/A -C -1 -/C -A -B /A C
X.12 1 -C /A B -A /C -1 C -/A -B A -/C
A = -E(3)
= (1-Sqrt(-3))/2 = -b3
B = -E(4)
= -Sqrt(-1) = -i
C = -E(12)^7
|