Normalized defining polynomial
\( x^{12} - 3 x^{11} + 24 x^{10} - 24 x^{9} + 273 x^{8} - 114 x^{7} + 1520 x^{6} - 336 x^{5} + 5496 x^{4} + \cdots + 7921 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(98611378021423828125\)
\(\medspace = 3^{18}\cdot 5^{9}\cdot 19^{4}\)
|
| |
| Root discriminant: | \(46.36\) |
| |
| Galois root discriminant: | $3^{3/2}5^{3/4}19^{1/2}\approx 75.73317874146682$ | ||
| Ramified primes: |
\(3\), \(5\), \(19\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{53\cdots 71}a^{11}+\frac{26\cdots 84}{53\cdots 71}a^{10}+\frac{62\cdots 05}{53\cdots 71}a^{9}+\frac{60\cdots 69}{53\cdots 71}a^{8}+\frac{48\cdots 61}{53\cdots 71}a^{7}-\frac{20\cdots 13}{53\cdots 71}a^{6}+\frac{14\cdots 53}{53\cdots 71}a^{5}-\frac{37\cdots 41}{53\cdots 71}a^{4}+\frac{23\cdots 25}{53\cdots 71}a^{3}-\frac{19\cdots 88}{53\cdots 71}a^{2}+\frac{16\cdots 80}{53\cdots 71}a+\frac{23\cdots 53}{60\cdots 39}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{4}\times C_{4}$, which has order $32$ |
| |
| Narrow class group: | $C_{2}\times C_{4}\times C_{4}$, which has order $32$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1203248218130}{31\cdots 81}a^{11}+\frac{3032362189065}{31\cdots 81}a^{10}-\frac{21650889935335}{31\cdots 81}a^{9}-\frac{5912954843030}{31\cdots 81}a^{8}-\frac{180501260702530}{31\cdots 81}a^{7}-\frac{192363699674320}{31\cdots 81}a^{6}-\frac{523388658879894}{31\cdots 81}a^{5}-\frac{14\cdots 85}{31\cdots 81}a^{4}-\frac{980739170277990}{31\cdots 81}a^{3}-\frac{40\cdots 95}{31\cdots 81}a^{2}+\frac{830340098511580}{31\cdots 81}a-\frac{48\cdots 69}{31\cdots 81}$, $\frac{833153665010}{31\cdots 81}a^{11}+\frac{2298544316839}{31\cdots 81}a^{10}-\frac{16030058005430}{31\cdots 81}a^{9}+\frac{8257395488325}{31\cdots 81}a^{8}-\frac{172567874875670}{31\cdots 81}a^{7}+\frac{113940069257130}{31\cdots 81}a^{6}-\frac{861787887802932}{31\cdots 81}a^{5}+\frac{804075921124220}{31\cdots 81}a^{4}-\frac{29\cdots 95}{31\cdots 81}a^{3}+\frac{30\cdots 30}{31\cdots 81}a^{2}-\frac{30\cdots 50}{31\cdots 81}a+\frac{74\cdots 76}{31\cdots 81}$, $\frac{10\cdots 83}{53\cdots 71}a^{11}-\frac{17\cdots 21}{53\cdots 71}a^{10}+\frac{59\cdots 04}{53\cdots 71}a^{9}-\frac{48\cdots 74}{53\cdots 71}a^{8}+\frac{41\cdots 76}{53\cdots 71}a^{7}-\frac{43\cdots 13}{53\cdots 71}a^{6}+\frac{27\cdots 82}{53\cdots 71}a^{5}-\frac{19\cdots 06}{53\cdots 71}a^{4}+\frac{40\cdots 27}{53\cdots 71}a^{3}-\frac{54\cdots 61}{53\cdots 71}a^{2}+\frac{13\cdots 20}{53\cdots 71}a-\frac{65\cdots 50}{60\cdots 39}$, $\frac{22\cdots 39}{53\cdots 71}a^{11}-\frac{10\cdots 95}{53\cdots 71}a^{10}+\frac{42\cdots 63}{53\cdots 71}a^{9}+\frac{62\cdots 02}{53\cdots 71}a^{8}+\frac{59\cdots 28}{53\cdots 71}a^{7}+\frac{10\cdots 73}{53\cdots 71}a^{6}+\frac{38\cdots 66}{53\cdots 71}a^{5}+\frac{56\cdots 50}{53\cdots 71}a^{4}+\frac{12\cdots 12}{53\cdots 71}a^{3}+\frac{15\cdots 86}{53\cdots 71}a^{2}+\frac{19\cdots 51}{53\cdots 71}a+\frac{18\cdots 21}{60\cdots 39}$, $\frac{35\cdots 07}{53\cdots 71}a^{11}+\frac{15\cdots 72}{53\cdots 71}a^{10}-\frac{87\cdots 60}{53\cdots 71}a^{9}+\frac{12\cdots 61}{53\cdots 71}a^{8}-\frac{65\cdots 31}{53\cdots 71}a^{7}+\frac{63\cdots 68}{53\cdots 71}a^{6}-\frac{27\cdots 93}{53\cdots 71}a^{5}+\frac{13\cdots 10}{53\cdots 71}a^{4}-\frac{68\cdots 73}{53\cdots 71}a^{3}+\frac{37\cdots 32}{53\cdots 71}a^{2}-\frac{59\cdots 37}{53\cdots 71}a+\frac{11\cdots 94}{60\cdots 39}$
|
| |
| Regulator: | \( 3153.9783425305222 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 3153.9783425305222 \cdot 32}{2\cdot\sqrt{98611378021423828125}}\cr\approx \mathstrut & 0.312675883550619 \end{aligned}\]
Galois group
$C_2^4:C_{12}$ (as 12T99):
| A solvable group of order 192 |
| The 20 conjugacy class representatives for $C_2^4:C_{12}$ |
| Character table for $C_2^4:C_{12}$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 6.2.296065125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | R | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.3.0.1}{3} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.6.18a4.3 | $x^{12} + 12 x^{11} + 72 x^{10} + 283 x^{9} + 810 x^{8} + 1776 x^{7} + 3056 x^{6} + 4152 x^{5} + 4416 x^{4} + 3590 x^{3} + 2130 x^{2} + 843 x + 190$ | $6$ | $2$ | $18$ | $C_{12}$ | $$[2]_{2}^{2}$$ |
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(19\)
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 19.1.2.1a1.2 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 19.1.2.1a1.2 | $x^{2} + 38$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 19.2.2.2a1.2 | $x^{4} + 36 x^{3} + 328 x^{2} + 72 x + 23$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |