Normalized defining polynomial
\( x^{12} - 4 x^{11} - 32 x^{10} + 124 x^{9} + 339 x^{8} - 1252 x^{7} - 1458 x^{6} + 4864 x^{5} + \cdots - 239 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[12, 0]$ |
| |
| Discriminant: |
\(2951578112000000000\)
\(\medspace = 2^{18}\cdot 5^{9}\cdot 7^{8}\)
|
| |
| Root discriminant: | \(34.61\) |
| |
| Galois root discriminant: | $2^{3/2}5^{3/4}7^{2/3}\approx 34.607576700316336$ | ||
| Ramified primes: |
\(2\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{12}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(280=2^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{280}(107,·)$, $\chi_{280}(1,·)$, $\chi_{280}(67,·)$, $\chi_{280}(9,·)$, $\chi_{280}(267,·)$, $\chi_{280}(81,·)$, $\chi_{280}(163,·)$, $\chi_{280}(43,·)$, $\chi_{280}(121,·)$, $\chi_{280}(249,·)$, $\chi_{280}(123,·)$, $\chi_{280}(169,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{62078}a^{10}-\frac{2752}{31039}a^{9}-\frac{3793}{31039}a^{8}+\frac{7015}{62078}a^{7}-\frac{4625}{31039}a^{6}-\frac{19443}{62078}a^{5}-\frac{15108}{31039}a^{4}-\frac{12720}{31039}a^{3}-\frac{9617}{62078}a^{2}+\frac{8987}{62078}a+\frac{23721}{62078}$, $\frac{1}{114548870798}a^{11}+\frac{91610}{57274435399}a^{10}+\frac{339356079}{114548870798}a^{9}+\frac{3991356675}{114548870798}a^{8}+\frac{229671743}{114548870798}a^{7}-\frac{11731433345}{57274435399}a^{6}-\frac{2045884830}{57274435399}a^{5}-\frac{48958056717}{114548870798}a^{4}+\frac{963044744}{57274435399}a^{3}-\frac{51946411089}{114548870798}a^{2}+\frac{27099397157}{114548870798}a+\frac{6993022695}{114548870798}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{14}{31039}a^{11}-\frac{115}{31039}a^{10}-\frac{235}{31039}a^{9}+\frac{7085}{62078}a^{8}-\frac{1400}{31039}a^{7}-\frac{34909}{31039}a^{6}+\frac{34342}{31039}a^{5}+\frac{255655}{62078}a^{4}-\frac{132260}{31039}a^{3}-\frac{281779}{62078}a^{2}+\frac{96746}{31039}a+\frac{17483}{62078}$, $\frac{60436500}{57274435399}a^{11}-\frac{274401726}{57274435399}a^{10}-\frac{1811428760}{57274435399}a^{9}+\frac{8547641730}{57274435399}a^{8}+\frac{16848769680}{57274435399}a^{7}-\frac{86380707330}{57274435399}a^{6}-\frac{55946446740}{57274435399}a^{5}+\frac{326669986695}{57274435399}a^{4}+\frac{73146172440}{57274435399}a^{3}-\frac{355661439720}{57274435399}a^{2}-\frac{133263895880}{57274435399}a+\frac{56962042131}{57274435399}$, $\frac{60436500}{57274435399}a^{11}-\frac{274401726}{57274435399}a^{10}-\frac{1811428760}{57274435399}a^{9}+\frac{8547641730}{57274435399}a^{8}+\frac{16848769680}{57274435399}a^{7}-\frac{86380707330}{57274435399}a^{6}-\frac{55946446740}{57274435399}a^{5}+\frac{326669986695}{57274435399}a^{4}+\frac{73146172440}{57274435399}a^{3}-\frac{355661439720}{57274435399}a^{2}-\frac{133263895880}{57274435399}a-\frac{312393268}{57274435399}$, $\frac{54681866}{57274435399}a^{11}-\frac{73985501}{57274435399}a^{10}-\frac{2360952005}{57274435399}a^{9}+\frac{5043828885}{114548870798}a^{8}+\frac{36670289480}{57274435399}a^{7}-\frac{30353808611}{57274435399}a^{6}-\frac{249370314086}{57274435399}a^{5}+\frac{308191098785}{114548870798}a^{4}+\frac{711250967100}{57274435399}a^{3}-\frac{618221397901}{114548870798}a^{2}-\frac{643783799706}{57274435399}a+\frac{208664479291}{114548870798}$, $\frac{45912114}{57274435399}a^{11}-\frac{223989205}{57274435399}a^{10}-\frac{1416786515}{57274435399}a^{9}+\frac{14095610395}{114548870798}a^{8}+\frac{14654845000}{57274435399}a^{7}-\frac{72804137419}{57274435399}a^{6}-\frac{66685334502}{57274435399}a^{5}+\frac{598341301105}{114548870798}a^{4}+\frac{150001645340}{57274435399}a^{3}-\frac{946798845939}{114548870798}a^{2}-\frac{153480532254}{57274435399}a+\frac{388358833431}{114548870798}$, $\frac{394539783}{57274435399}a^{11}-\frac{2546593745}{114548870798}a^{10}-\frac{27018191227}{114548870798}a^{9}+\frac{77363768053}{114548870798}a^{8}+\frac{159479112919}{57274435399}a^{7}-\frac{378418971301}{57274435399}a^{6}-\frac{1621633116225}{114548870798}a^{5}+\frac{2773762221325}{114548870798}a^{4}+\frac{3509275983731}{114548870798}a^{3}-\frac{1634806489860}{57274435399}a^{2}-\frac{2886389196533}{114548870798}a+\frac{234440121447}{57274435399}$, $\frac{222037205}{114548870798}a^{11}-\frac{1203830591}{114548870798}a^{10}-\frac{3251015890}{57274435399}a^{9}+\frac{19624409068}{57274435399}a^{8}+\frac{58465406667}{114548870798}a^{7}-\frac{426569182153}{114548870798}a^{6}-\frac{183682260803}{114548870798}a^{5}+\frac{1826689205605}{114548870798}a^{4}+\frac{200164766395}{114548870798}a^{3}-\frac{2605500543481}{114548870798}a^{2}-\frac{120608991064}{57274435399}a+\frac{415383660851}{57274435399}$, $\frac{90901659}{114548870798}a^{11}-\frac{370581052}{57274435399}a^{10}-\frac{2380005807}{114548870798}a^{9}+\frac{11422688841}{57274435399}a^{8}+\frac{19117601291}{114548870798}a^{7}-\frac{109477388721}{57274435399}a^{6}-\frac{26423828768}{57274435399}a^{5}+\frac{372765394644}{57274435399}a^{4}-\frac{10901107901}{57274435399}a^{3}-\frac{340869411476}{57274435399}a^{2}+\frac{133449510397}{114548870798}a+\frac{1943316816}{57274435399}$, $\frac{181979877}{114548870798}a^{11}-\frac{703412497}{114548870798}a^{10}-\frac{5550094797}{114548870798}a^{9}+\frac{21043597409}{114548870798}a^{8}+\frac{53638593325}{114548870798}a^{7}-\frac{102094184989}{57274435399}a^{6}-\frac{94725699870}{57274435399}a^{5}+\frac{753593115223}{114548870798}a^{4}+\frac{101401910552}{57274435399}a^{3}-\frac{435430896862}{57274435399}a^{2}-\frac{67432232755}{114548870798}a+\frac{62135160650}{57274435399}$, $\frac{4282009}{57274435399}a^{11}+\frac{52205599}{114548870798}a^{10}-\frac{331289254}{57274435399}a^{9}-\frac{622658736}{57274435399}a^{8}+\frac{14812667523}{114548870798}a^{7}+\frac{5283090127}{114548870798}a^{6}-\frac{129601856935}{114548870798}a^{5}+\frac{38064364941}{114548870798}a^{4}+\frac{215000520176}{57274435399}a^{3}-\frac{211740893341}{114548870798}a^{2}-\frac{357348303611}{114548870798}a+\frac{34550033012}{57274435399}$, $\frac{246403893}{114548870798}a^{11}-\frac{1067354365}{114548870798}a^{10}-\frac{6734369901}{114548870798}a^{9}+\frac{29012576233}{114548870798}a^{8}+\frac{54551932559}{114548870798}a^{7}-\frac{228582713555}{114548870798}a^{6}-\frac{85246945802}{57274435399}a^{5}+\frac{280840132055}{57274435399}a^{4}+\frac{169536513040}{57274435399}a^{3}-\frac{240107325205}{57274435399}a^{2}-\frac{152572756977}{114548870798}a+\frac{101610212191}{114548870798}$
|
| |
| Regulator: | \( 193697.65851 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 193697.65851 \cdot 1}{2\cdot\sqrt{2951578112000000000}}\cr\approx \mathstrut & 0.23090172775 \end{aligned}\] (assuming GRH)
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.4.8000.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.12.0.1}{12} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.1.0.1}{1} }^{12}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.1.0.1}{1} }^{12}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.6.2.18a1.2 | $x^{12} + 2 x^{10} + 2 x^{9} + x^{8} + 4 x^{7} + 3 x^{6} + 2 x^{5} + 4 x^{4} + 10 x^{3} + x^{2} + 2 x + 3$ | $2$ | $6$ | $18$ | $C_{12}$ | $$[3]^{6}$$ |
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(7\)
| 7.4.3.8a1.3 | $x^{12} + 15 x^{10} + 12 x^{9} + 84 x^{8} + 120 x^{7} + 263 x^{6} + 372 x^{5} + 492 x^{4} + 424 x^{3} + 279 x^{2} + 108 x + 34$ | $3$ | $4$ | $8$ | $C_{12}$ | $$[\ ]_{3}^{4}$$ |