Normalized defining polynomial
\( x^{12} - 3 x^{11} + 9 x^{10} + 19 x^{9} - 75 x^{8} + 192 x^{7} - 187 x^{6} - 204 x^{5} + 279 x^{4} + \cdots + 1 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[8, 2]$ |
| |
| Discriminant: |
\(289369624500000000\)
\(\medspace = 2^{8}\cdot 3^{14}\cdot 5^{9}\cdot 11^{2}\)
|
| |
| Root discriminant: | \(28.52\) |
| |
| Galois root discriminant: | $2^{7/4}3^{25/18}5^{3/4}11^{1/2}\approx 171.55158998906003$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{10416035878}a^{11}-\frac{836254367}{10416035878}a^{10}+\frac{371880705}{5208017939}a^{9}-\frac{302462314}{5208017939}a^{8}-\frac{4718389115}{10416035878}a^{7}-\frac{646456219}{10416035878}a^{6}+\frac{2538267793}{5208017939}a^{5}-\frac{2007222878}{5208017939}a^{4}+\frac{2920445751}{10416035878}a^{3}+\frac{1884850193}{10416035878}a^{2}-\frac{2894076927}{10416035878}a-\frac{1217649595}{10416035878}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2028417}{7536929}a^{11}-\frac{5602752}{7536929}a^{10}+\frac{33919013}{15073858}a^{9}+\frac{85103007}{15073858}a^{8}-\frac{283852317}{15073858}a^{7}+\frac{714279219}{15073858}a^{6}-\frac{295453545}{7536929}a^{5}-\frac{482898261}{7536929}a^{4}+\frac{459607689}{7536929}a^{3}+\frac{107552034}{7536929}a^{2}-\frac{125691891}{15073858}a+\frac{2154043}{15073858}$, $\frac{792117377}{10416035878}a^{11}+\frac{1762294011}{10416035878}a^{10}-\frac{2561246638}{5208017939}a^{9}-\frac{21025950757}{10416035878}a^{8}+\frac{49123304621}{10416035878}a^{7}-\frac{51284680758}{5208017939}a^{6}+\frac{9506883082}{5208017939}a^{5}+\frac{152713849019}{5208017939}a^{4}-\frac{120043971721}{10416035878}a^{3}-\frac{215758632777}{10416035878}a^{2}+\frac{57680204059}{10416035878}a+\frac{13826964387}{5208017939}$, $\frac{3671548135}{10416035878}a^{11}-\frac{5690370395}{5208017939}a^{10}+\frac{17197751466}{5208017939}a^{9}+\frac{32800117662}{5208017939}a^{8}-\frac{279750547271}{10416035878}a^{7}+\frac{368146892726}{5208017939}a^{6}-\frac{388883956093}{5208017939}a^{5}-\frac{312524189659}{5208017939}a^{4}+\frac{1033044806835}{10416035878}a^{3}-\frac{44790602813}{5208017939}a^{2}-\frac{76003059807}{10416035878}a-\frac{701881797}{5208017939}$, $a$, $\frac{2079245101}{10416035878}a^{11}-\frac{3268225400}{5208017939}a^{10}+\frac{19807421123}{10416035878}a^{9}+\frac{36022417739}{10416035878}a^{8}-\frac{79616304814}{5208017939}a^{7}+\frac{423267554033}{10416035878}a^{6}-\frac{232037207489}{5208017939}a^{5}-\frac{158885962595}{5208017939}a^{4}+\frac{558634761593}{10416035878}a^{3}-\frac{22682915904}{5208017939}a^{2}-\frac{23766069369}{5208017939}a+\frac{2362364771}{10416035878}$, $\frac{2056227829}{5208017939}a^{11}+\frac{4978702320}{5208017939}a^{10}-\frac{15017903588}{5208017939}a^{9}-\frac{99328903635}{10416035878}a^{8}+\frac{131346361377}{5208017939}a^{7}-\frac{617054080121}{10416035878}a^{6}+\frac{160527472583}{5208017939}a^{5}+\frac{637282888857}{5208017939}a^{4}-\frac{345675468367}{5208017939}a^{3}-\frac{295852227237}{5208017939}a^{2}+\frac{54501333957}{5208017939}a+\frac{37031422741}{10416035878}$, $\frac{5160727824}{5208017939}a^{11}-\frac{32922766363}{10416035878}a^{10}+\frac{99088960539}{10416035878}a^{9}+\frac{88680198131}{5208017939}a^{8}-\frac{808071428331}{10416035878}a^{7}+\frac{2133593965591}{10416035878}a^{6}-\frac{1167163424268}{5208017939}a^{5}-\frac{833968007381}{5208017939}a^{4}+\frac{1597822728545}{5208017939}a^{3}-\frac{490842268225}{10416035878}a^{2}-\frac{311083801535}{10416035878}a+\frac{47899229231}{10416035878}$, $\frac{2402767364}{5208017939}a^{11}+\frac{13764067125}{10416035878}a^{10}-\frac{41984609137}{10416035878}a^{9}-\frac{47474126113}{5208017939}a^{8}+\frac{341580928807}{10416035878}a^{7}-\frac{885717188597}{10416035878}a^{6}+\frac{414757205395}{5208017939}a^{5}+\frac{483189105542}{5208017939}a^{4}-\frac{526489890428}{5208017939}a^{3}-\frac{94221635131}{10416035878}a^{2}+\frac{1589500123}{10416035878}a+\frac{10310592559}{10416035878}$, $\frac{6834604987}{5208017939}a^{11}-\frac{39823750317}{10416035878}a^{10}+\frac{60389684869}{5208017939}a^{9}+\frac{133367134837}{5208017939}a^{8}-\frac{495795251003}{5208017939}a^{7}+\frac{2562399507803}{10416035878}a^{6}-\frac{1209664683537}{5208017939}a^{5}-\frac{1388870531617}{5208017939}a^{4}+\frac{1682500877972}{5208017939}a^{3}+\frac{204291364283}{10416035878}a^{2}-\frac{157956784266}{5208017939}a+\frac{26603040661}{10416035878}$
|
| |
| Regulator: | \( 23766.397630604413 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{2}\cdot 23766.397630604413 \cdot 1}{2\cdot\sqrt{289369624500000000}}\cr\approx \mathstrut & 0.223257776396234 \end{aligned}\]
Galois group
$C_3:S_3^3:C_4$ (as 12T245):
| A solvable group of order 2592 |
| The 30 conjugacy class representatives for $C_3:S_3^3:C_4$ |
| Character table for $C_3:S_3^3:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.12.0.1}{12} }$ | R | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.12.0.1}{12} }$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 2.4.2.8a5.2 | $x^{8} + 2 x^{7} + 4 x^{5} + 6 x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 5$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $$[2, 2, 2]^{4}$$ | |
|
\(3\)
| 3.2.6.14a1.2 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2630 x^{6} + 3303 x^{5} + 3240 x^{4} + 2462 x^{3} + 1410 x^{2} + 567 x + 124$ | $6$ | $2$ | $14$ | $(C_3\times C_3):C_4$ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$ |
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(11\)
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.4.1.0a1.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 11.2.2.2a1.1 | $x^{4} + 14 x^{3} + 53 x^{2} + 39 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |