Normalized defining polynomial
\( x^{12} - 42 x^{10} - 19 x^{9} + 639 x^{8} + 531 x^{7} - 4122 x^{6} - 4653 x^{5} + 9900 x^{4} + \cdots - 3509 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[12, 0]$ |
| |
| Discriminant: |
\(11078561287986328125\)
\(\medspace = 3^{18}\cdot 5^{9}\cdot 11^{4}\)
|
| |
| Root discriminant: | \(38.64\) |
| |
| Galois root discriminant: | $3^{97/54}5^{3/4}11^{2/3}\approx 118.99821203205568$ | ||
| Ramified primes: |
\(3\), \(5\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{5}+\frac{1}{3}a^{2}$, $\frac{1}{33}a^{9}+\frac{2}{33}a^{7}+\frac{1}{11}a^{6}+\frac{4}{11}a^{5}+\frac{14}{33}a^{4}+\frac{1}{11}a^{3}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{33}a^{10}+\frac{2}{33}a^{8}+\frac{1}{11}a^{7}+\frac{1}{33}a^{6}+\frac{14}{33}a^{5}+\frac{1}{11}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{472870497}a^{11}-\frac{2952715}{472870497}a^{10}-\frac{2423141}{472870497}a^{9}-\frac{2704330}{42988227}a^{8}-\frac{9007430}{472870497}a^{7}+\frac{5389723}{157623499}a^{6}-\frac{194282939}{472870497}a^{5}+\frac{49918450}{472870497}a^{4}+\frac{32046226}{157623499}a^{3}-\frac{6398629}{14329409}a^{2}-\frac{8146100}{42988227}a+\frac{9313030}{42988227}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{91725}{462239}a^{11}-\frac{267422}{1386717}a^{10}-\frac{3767616}{462239}a^{9}+\frac{1926596}{462239}a^{8}+\frac{56789486}{462239}a^{7}-\frac{20089291}{1386717}a^{6}-\frac{372047599}{462239}a^{5}-\frac{63392780}{462239}a^{4}+\frac{2914230638}{1386717}a^{3}+\frac{325816700}{462239}a^{2}-\frac{2155859662}{1386717}a-\frac{986800807}{1386717}$, $\frac{700081}{5084629}a^{11}-\frac{2096185}{15253887}a^{10}-\frac{28690711}{5084629}a^{9}+\frac{1388162}{462239}a^{8}+\frac{431667573}{5084629}a^{7}-\frac{172055399}{15253887}a^{6}-\frac{256743691}{462239}a^{5}-\frac{41260912}{462239}a^{4}+\frac{22106167114}{15253887}a^{3}+\frac{220554873}{462239}a^{2}-\frac{1488207145}{1386717}a-\frac{676833763}{1386717}$, $\frac{234357}{5084629}a^{11}-\frac{705758}{15253887}a^{10}-\frac{28748215}{15253887}a^{9}+\frac{462763}{462239}a^{8}+\frac{143935736}{5084629}a^{7}-\frac{54185986}{15253887}a^{6}-\frac{85513226}{462239}a^{5}-\frac{14814646}{462239}a^{4}+\frac{7360787483}{15253887}a^{3}+\frac{76925464}{462239}a^{2}-\frac{496764740}{1386717}a-\frac{77647019}{462239}$, $\frac{184231732}{472870497}a^{11}-\frac{184661129}{472870497}a^{10}-\frac{7546546489}{472870497}a^{9}+\frac{1344747947}{157623499}a^{8}+\frac{113510529511}{472870497}a^{7}-\frac{15140961029}{472870497}a^{6}-\frac{247521381718}{157623499}a^{5}-\frac{120015037397}{472870497}a^{4}+\frac{1937246069329}{472870497}a^{3}+\frac{58260774343}{42988227}a^{2}-\frac{43411490566}{14329409}a-\frac{59379083921}{42988227}$, $\frac{24912122}{472870497}a^{11}-\frac{7697255}{157623499}a^{10}-\frac{1028661896}{472870497}a^{9}+\frac{165105616}{157623499}a^{8}+\frac{15569800787}{472870497}a^{7}-\frac{535807136}{157623499}a^{6}-\frac{34120717270}{157623499}a^{5}-\frac{17630340736}{472870497}a^{4}+\frac{89442377128}{157623499}a^{3}+\frac{8053902449}{42988227}a^{2}-\frac{18177092789}{42988227}a-\frac{8275003061}{42988227}$, $\frac{9183695}{157623499}a^{11}-\frac{2307514}{42988227}a^{10}-\frac{1137997247}{472870497}a^{9}+\frac{536815799}{472870497}a^{8}+\frac{17240319155}{472870497}a^{7}-\frac{1567562863}{472870497}a^{6}-\frac{113503422946}{472870497}a^{5}-\frac{20934403348}{472870497}a^{4}+\frac{298003927682}{472870497}a^{3}+\frac{9148112698}{42988227}a^{2}-\frac{20159404960}{42988227}a-\frac{9235426108}{42988227}$, $\frac{60731384}{472870497}a^{11}-\frac{60094132}{472870497}a^{10}-\frac{2490808568}{472870497}a^{9}+\frac{1308248171}{472870497}a^{8}+\frac{37495794770}{472870497}a^{7}-\frac{4774331554}{472870497}a^{6}-\frac{245372667610}{472870497}a^{5}-\frac{40500545347}{472870497}a^{4}+\frac{639881695991}{472870497}a^{3}+\frac{6448150479}{14329409}a^{2}-\frac{14326889772}{14329409}a-\frac{19623925783}{42988227}$, $\frac{57319751}{472870497}a^{11}-\frac{18229179}{157623499}a^{10}-\frac{2359367278}{472870497}a^{9}+\frac{393069669}{157623499}a^{8}+\frac{35615980885}{472870497}a^{7}-\frac{1325251047}{157623499}a^{6}-\frac{77874989279}{157623499}a^{5}-\frac{40338850097}{472870497}a^{4}+\frac{203620565310}{157623499}a^{3}+\frac{18609816983}{42988227}a^{2}-\frac{41159114530}{42988227}a-\frac{18806063533}{42988227}$, $\frac{43508254}{472870497}a^{11}-\frac{17453576}{157623499}a^{10}-\frac{1747364063}{472870497}a^{9}+\frac{1204299658}{472870497}a^{8}+\frac{25883961236}{472870497}a^{7}-\frac{558160385}{42988227}a^{6}-\frac{167506344854}{472870497}a^{5}-\frac{17138578279}{472870497}a^{4}+\frac{434283537047}{472870497}a^{3}+\frac{3955796609}{14329409}a^{2}-\frac{29149109345}{42988227}a-\frac{12765446611}{42988227}$, $\frac{93957037}{472870497}a^{11}-\frac{34638205}{157623499}a^{10}-\frac{1269176985}{157623499}a^{9}+\frac{778257957}{157623499}a^{8}+\frac{56771011534}{472870497}a^{7}-\frac{3481810720}{157623499}a^{6}-\frac{122971037242}{157623499}a^{5}-\frac{50396588744}{472870497}a^{4}+\frac{319474417753}{157623499}a^{3}+\frac{28166810527}{42988227}a^{2}-\frac{64415048152}{42988227}a-\frac{9757374221}{14329409}$, $\frac{81569182}{472870497}a^{11}-\frac{26079941}{157623499}a^{10}-\frac{304351753}{42988227}a^{9}+\frac{554349584}{157623499}a^{8}+\frac{50410198222}{472870497}a^{7}-\frac{1718860164}{157623499}a^{6}-\frac{109907873916}{157623499}a^{5}-\frac{61156815815}{472870497}a^{4}+\frac{286268233357}{157623499}a^{3}+\frac{27130972687}{42988227}a^{2}-\frac{57759728617}{42988227}a-\frac{27065774024}{42988227}$
|
| |
| Regulator: | \( 387641.416817 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 387641.416817 \cdot 1}{2\cdot\sqrt{11078561287986328125}}\cr\approx \mathstrut & 0.238516507889 \end{aligned}\] (assuming GRH)
Galois group
$C_3^2:C_{12}$ (as 12T73):
| A solvable group of order 108 |
| The 18 conjugacy class representatives for $C_3^2:C_{12}$ |
| Character table for $C_3^2:C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | R | ${\href{/padicField/7.12.0.1}{12} }$ | R | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.4.0.1}{4} }^{3}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{6}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.6.18a4.5 | $x^{12} + 15 x^{11} + 105 x^{10} + 463 x^{9} + 1440 x^{8} + 3336 x^{7} + 5912 x^{6} + 8088 x^{5} + 8496 x^{4} + 6710 x^{3} + 3810 x^{2} + 1419 x + 268$ | $6$ | $2$ | $18$ | 12T73 | $$[\frac{3}{2}, \frac{3}{2}, 2]_{2}^{2}$$ |
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(11\)
| 11.2.3.4a1.1 | $x^{6} + 21 x^{5} + 153 x^{4} + 427 x^{3} + 306 x^{2} + 95 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
| 11.6.1.0a1.1 | $x^{6} + 3 x^{4} + 4 x^{3} + 6 x^{2} + 7 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |