Normalized defining polynomial
\( x^{12} - 5 x^{11} + 19 x^{10} - 54 x^{9} + 116 x^{8} - 217 x^{7} + 305 x^{6} - 297 x^{5} + 258 x^{4} + \cdots + 41 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(300342961072265625\)
\(\medspace = 3^{8}\cdot 5^{9}\cdot 29^{3}\cdot 31^{2}\)
|
| |
| Root discriminant: | \(28.61\) |
| |
| Galois root discriminant: | $3^{25/18}5^{3/4}29^{1/2}31^{2/3}\approx 817.2144566356151$ | ||
| Ramified primes: |
\(3\), \(5\), \(29\), \(31\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{145}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 4.0.3625.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{12}a^{10}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{12}a^{5}-\frac{1}{6}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{6}a-\frac{1}{12}$, $\frac{1}{1410058452}a^{11}-\frac{22687589}{1410058452}a^{10}+\frac{11369208}{117504871}a^{9}+\frac{331148975}{705029226}a^{8}-\frac{24527737}{117504871}a^{7}+\frac{592477481}{1410058452}a^{6}-\frac{558884365}{1410058452}a^{5}-\frac{102998281}{705029226}a^{4}+\frac{133260041}{352514613}a^{3}+\frac{13097343}{235009742}a^{2}+\frac{659987473}{1410058452}a-\frac{311278343}{1410058452}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{139234}{32046783}a^{11}-\frac{319733}{32046783}a^{10}+\frac{336677}{10682261}a^{9}-\frac{984719}{32046783}a^{8}-\frac{507381}{10682261}a^{7}+\frac{7457585}{32046783}a^{6}-\frac{27663640}{32046783}a^{5}+\frac{49331143}{32046783}a^{4}-\frac{54882805}{32046783}a^{3}+\frac{10630860}{10682261}a^{2}-\frac{12331583}{32046783}a+\frac{21221683}{32046783}$, $\frac{1698331}{705029226}a^{11}-\frac{13464349}{705029226}a^{10}+\frac{22866574}{352514613}a^{9}-\frac{22890255}{117504871}a^{8}+\frac{48888429}{117504871}a^{7}-\frac{478796797}{705029226}a^{6}+\frac{569069563}{705029226}a^{5}-\frac{137296409}{352514613}a^{4}-\frac{256156990}{352514613}a^{3}+\frac{442187054}{352514613}a^{2}-\frac{369402985}{705029226}a+\frac{16684747}{235009742}$, $\frac{6209416}{352514613}a^{11}-\frac{59087377}{705029226}a^{10}+\frac{34894429}{117504871}a^{9}-\frac{282262781}{352514613}a^{8}+\frac{186239489}{117504871}a^{7}-\frac{997654705}{352514613}a^{6}+\frac{2667883555}{705029226}a^{5}-\frac{1096512029}{352514613}a^{4}+\frac{904570259}{352514613}a^{3}-\frac{300230696}{117504871}a^{2}+\frac{702149500}{352514613}a-\frac{481733785}{705029226}$, $\frac{10063479}{470019484}a^{11}-\frac{112820809}{1410058452}a^{10}+\frac{100325293}{352514613}a^{9}-\frac{481378243}{705029226}a^{8}+\frac{142874605}{117504871}a^{7}-\frac{944336685}{470019484}a^{6}+\frac{2563367971}{1410058452}a^{5}-\frac{221060369}{705029226}a^{4}+\frac{214686388}{352514613}a^{3}-\frac{812972465}{705029226}a^{2}+\frac{788574989}{1410058452}a+\frac{1931842513}{1410058452}$, $\frac{170348267}{1410058452}a^{11}-\frac{799069151}{1410058452}a^{10}+\frac{704757439}{352514613}a^{9}-\frac{1294936653}{235009742}a^{8}+\frac{1274988646}{117504871}a^{7}-\frac{27365043869}{1410058452}a^{6}+\frac{34929651509}{1410058452}a^{5}-\frac{12195422647}{705029226}a^{4}+\frac{5770124054}{352514613}a^{3}-\frac{13496085233}{705029226}a^{2}+\frac{14893972843}{1410058452}a-\frac{2255893043}{470019484}$
|
| |
| Regulator: | \( 5193.55523784 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 5193.55523784 \cdot 2}{2\cdot\sqrt{300342961072265625}}\cr\approx \mathstrut & 0.583089520438 \end{aligned}\]
Galois group
$(C_3^2\times S_3^2):C_4$ (as 12T209):
| A solvable group of order 1296 |
| The 36 conjugacy class representatives for $(C_3^2\times S_3^2):C_4$ |
| Character table for $(C_3^2\times S_3^2):C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.3625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }^{2}$ | R | R | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{5}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | R | R | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.3.6a5.1 | $x^{6} + 6 x^{5} + 18 x^{4} + 35 x^{3} + 42 x^{2} + 30 x + 11$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{2}$$ | |
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(29\)
| 29.3.1.0a1.1 | $x^{3} + 2 x + 27$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 29.3.1.0a1.1 | $x^{3} + 2 x + 27$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 29.3.2.3a1.2 | $x^{6} + 4 x^{4} + 54 x^{3} + 4 x^{2} + 108 x + 758$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(31\)
| 31.3.1.0a1.1 | $x^{3} + x + 28$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 31.1.3.2a1.3 | $x^{3} + 279$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 31.6.1.0a1.1 | $x^{6} + 19 x^{3} + 16 x^{2} + 8 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |