Normalized defining polynomial
\( x^{12} - 3 x^{11} - 36 x^{10} + 106 x^{9} + 393 x^{8} - 1164 x^{7} - 1350 x^{6} + 4794 x^{5} + \cdots - 1349 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[12, 0]$ |
| |
| Discriminant: |
\(9891413435408203125\)
\(\medspace = 3^{16}\cdot 5^{9}\cdot 7^{6}\)
|
| |
| Root discriminant: | \(38.28\) |
| |
| Galois root discriminant: | $3^{4/3}5^{3/4}7^{1/2}\approx 38.27702679912765$ | ||
| Ramified primes: |
\(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{12}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(315=3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{315}(64,·)$, $\chi_{315}(1,·)$, $\chi_{315}(211,·)$, $\chi_{315}(97,·)$, $\chi_{315}(169,·)$, $\chi_{315}(202,·)$, $\chi_{315}(13,·)$, $\chi_{315}(274,·)$, $\chi_{315}(307,·)$, $\chi_{315}(118,·)$, $\chi_{315}(106,·)$, $\chi_{315}(223,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19}a^{9}+\frac{4}{19}a^{8}+\frac{1}{19}a^{7}+\frac{8}{19}a^{6}+\frac{8}{19}a^{5}+\frac{1}{19}a^{4}-\frac{5}{19}a^{3}-\frac{8}{19}a^{2}+\frac{9}{19}a$, $\frac{1}{19}a^{10}+\frac{4}{19}a^{8}+\frac{4}{19}a^{7}-\frac{5}{19}a^{6}+\frac{7}{19}a^{5}-\frac{9}{19}a^{4}-\frac{7}{19}a^{3}+\frac{3}{19}a^{2}+\frac{2}{19}a$, $\frac{1}{1045156909429}a^{11}-\frac{2242936008}{1045156909429}a^{10}-\frac{24144692793}{1045156909429}a^{9}+\frac{33669755457}{1045156909429}a^{8}+\frac{316103098293}{1045156909429}a^{7}+\frac{99583078814}{1045156909429}a^{6}-\frac{5713060868}{11743336061}a^{5}-\frac{443185672267}{1045156909429}a^{4}+\frac{71685496487}{1045156909429}a^{3}+\frac{420826743567}{1045156909429}a^{2}-\frac{234702917662}{1045156909429}a+\frac{20409816750}{55008258391}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{11907}{2045521}a^{11}-\frac{30819}{2045521}a^{10}-\frac{456557}{2045521}a^{9}+\frac{1094634}{2045521}a^{8}+\frac{5694762}{2045521}a^{7}-\frac{12163826}{2045521}a^{6}-\frac{27520701}{2045521}a^{5}+\frac{51702033}{2045521}a^{4}+\frac{50198830}{2045521}a^{3}-\frac{79273935}{2045521}a^{2}-\frac{29759274}{2045521}a+\frac{1997934}{107659}$, $\frac{3604572825}{1045156909429}a^{11}-\frac{132880481}{55008258391}a^{10}-\frac{148199930155}{1045156909429}a^{9}+\frac{76839931740}{1045156909429}a^{8}+\frac{2036505254960}{1045156909429}a^{7}-\frac{717988514170}{1045156909429}a^{6}-\frac{124535807451}{11743336061}a^{5}+\frac{3955478826560}{1045156909429}a^{4}+\frac{23776442709100}{1045156909429}a^{3}-\frac{11032674479345}{1045156909429}a^{2}-\frac{14217501004015}{1045156909429}a+\frac{439233737907}{55008258391}$, $\frac{3604572825}{1045156909429}a^{11}-\frac{132880481}{55008258391}a^{10}-\frac{148199930155}{1045156909429}a^{9}+\frac{76839931740}{1045156909429}a^{8}+\frac{2036505254960}{1045156909429}a^{7}-\frac{717988514170}{1045156909429}a^{6}-\frac{124535807451}{11743336061}a^{5}+\frac{3955478826560}{1045156909429}a^{4}+\frac{23776442709100}{1045156909429}a^{3}-\frac{11032674479345}{1045156909429}a^{2}-\frac{14217501004015}{1045156909429}a+\frac{384225479516}{55008258391}$, $\frac{251832218}{55008258391}a^{11}-\frac{10300838629}{1045156909429}a^{10}-\frac{186879209874}{1045156909429}a^{9}+\frac{353799003752}{1045156909429}a^{8}+\frac{2403780332209}{1045156909429}a^{7}-\frac{3670615391235}{1045156909429}a^{6}-\frac{136735027706}{11743336061}a^{5}+\frac{13629186519807}{1045156909429}a^{4}+\frac{23187183661440}{1045156909429}a^{3}-\frac{15679241004492}{1045156909429}a^{2}-\frac{647538098810}{55008258391}a+\frac{328092812039}{55008258391}$, $\frac{29210587230}{1045156909429}a^{11}-\frac{67652199719}{1045156909429}a^{10}-\frac{1091939638094}{1045156909429}a^{9}+\frac{2327886531933}{1045156909429}a^{8}+\frac{12875475712758}{1045156909429}a^{7}-\frac{24448087064585}{1045156909429}a^{6}-\frac{610584948585}{11743336061}a^{5}+\frac{95136321659787}{1045156909429}a^{4}+\frac{74322030269016}{1045156909429}a^{3}-\frac{116505524485975}{1045156909429}a^{2}-\frac{31467810678154}{1045156909429}a+\frac{2123218762305}{55008258391}$, $\frac{3718638927}{1045156909429}a^{11}-\frac{282256083}{1045156909429}a^{10}-\frac{147345877217}{1045156909429}a^{9}-\frac{23922657801}{1045156909429}a^{8}+\frac{1883520078282}{1045156909429}a^{7}+\frac{802749626184}{1045156909429}a^{6}-\frac{99133422651}{11743336061}a^{5}-\frac{4991402659572}{1045156909429}a^{4}+\frac{15263429647440}{1045156909429}a^{3}+\frac{10630393017660}{1045156909429}a^{2}-\frac{8679476581308}{1045156909429}a-\frac{349612057236}{55008258391}$, $\frac{35319832053}{1045156909429}a^{11}-\frac{84434960703}{1045156909429}a^{10}-\frac{1325727613341}{1045156909429}a^{9}+\frac{2923498603812}{1045156909429}a^{8}+\frac{15778510617696}{1045156909429}a^{7}-\frac{31014526080954}{1045156909429}a^{6}-\frac{766008053661}{11743336061}a^{5}+\frac{6424097679966}{55008258391}a^{4}+\frac{98008681866550}{1045156909429}a^{3}-\frac{154461203381364}{1045156909429}a^{2}-\frac{44764750197339}{1045156909429}a+\frac{2994407251965}{55008258391}$, $\frac{15622399366}{1045156909429}a^{11}-\frac{22101358371}{1045156909429}a^{10}-\frac{597958696371}{1045156909429}a^{9}+\frac{37552590467}{55008258391}a^{8}+\frac{7285554742584}{1045156909429}a^{7}-\frac{6814448403570}{1045156909429}a^{6}-\frac{360163325950}{11743336061}a^{5}+\frac{25967494266789}{1045156909429}a^{4}+\frac{48828300883818}{1045156909429}a^{3}-\frac{32732367001119}{1045156909429}a^{2}-\frac{21963873701197}{1045156909429}a+\frac{736939629057}{55008258391}$, $\frac{66329694413}{1045156909429}a^{11}-\frac{200902424471}{1045156909429}a^{10}-\frac{2341296207875}{1045156909429}a^{9}+\frac{6953722511280}{1045156909429}a^{8}+\frac{24465995118315}{1045156909429}a^{7}-\frac{72866787907915}{1045156909429}a^{6}-\frac{827658998152}{11743336061}a^{5}+\frac{266868616404356}{1045156909429}a^{4}-\frac{11476162102950}{1045156909429}a^{3}-\frac{248308272685383}{1045156909429}a^{2}+\frac{83429468760477}{1045156909429}a+\frac{1252071764481}{55008258391}$, $\frac{108237957450}{1045156909429}a^{11}-\frac{11832723557}{55008258391}a^{10}-\frac{4109127951103}{1045156909429}a^{9}+\frac{7696763139963}{1045156909429}a^{8}+\frac{2621349493031}{55008258391}a^{7}-\frac{80595277109816}{1045156909429}a^{6}-\frac{2493620734873}{11743336061}a^{5}+\frac{320333380291695}{1045156909429}a^{4}+\frac{345049411852922}{1045156909429}a^{3}-\frac{22263873407848}{55008258391}a^{2}-\frac{169404883324736}{1045156909429}a+\frac{8936505707850}{55008258391}$, $\frac{217717789388}{1045156909429}a^{11}-\frac{417272433938}{1045156909429}a^{10}-\frac{8293146598225}{1045156909429}a^{9}+\frac{14094373437874}{1045156909429}a^{8}+\frac{100952130791220}{1045156909429}a^{7}-\frac{144069820737013}{1045156909429}a^{6}-\frac{5070905779424}{11743336061}a^{5}+\frac{554691523327267}{1045156909429}a^{4}+\frac{700923820280822}{1045156909429}a^{3}-\frac{686944750664067}{1045156909429}a^{2}-\frac{326064108878025}{1045156909429}a+\frac{14323875602157}{55008258391}$
|
| |
| Regulator: | \( 413348.51768 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 413348.51768 \cdot 1}{2\cdot\sqrt{9891413435408203125}}\cr\approx \mathstrut & 0.26916411520 \end{aligned}\] (assuming GRH)
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 4.4.6125.1, 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.4.0.1}{4} }^{3}$ | ${\href{/padicField/19.1.0.1}{1} }^{12}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.4.3.16a2.1 | $x^{12} + 6 x^{11} + 12 x^{10} + 8 x^{9} + 12 x^{8} + 48 x^{7} + 48 x^{6} + 36 x^{4} + 72 x^{3} + 35$ | $3$ | $4$ | $16$ | $C_{12}$ | $$[2]^{4}$$ |
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(7\)
| 7.6.2.6a1.1 | $x^{12} + 2 x^{10} + 10 x^{9} + 9 x^{8} + 22 x^{7} + 39 x^{6} + 52 x^{5} + 82 x^{4} + 78 x^{3} + 60 x^{2} + 43 x + 9$ | $2$ | $6$ | $6$ | $C_{12}$ | $$[\ ]_{2}^{6}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *12 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *12 | 1.35.4t1.a.a | $1$ | $ 5 \cdot 7 $ | 4.4.6125.1 | $C_4$ (as 4T1) | $0$ | $1$ |
| *12 | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| *12 | 1.35.4t1.a.b | $1$ | $ 5 \cdot 7 $ | 4.4.6125.1 | $C_4$ (as 4T1) | $0$ | $1$ |
| *12 | 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
| *12 | 1.315.12t1.a.a | $1$ | $ 3^{2} \cdot 5 \cdot 7 $ | 12.12.9891413435408203125.1 | $C_{12}$ (as 12T1) | $0$ | $1$ |
| *12 | 1.45.6t1.a.a | $1$ | $ 3^{2} \cdot 5 $ | 6.6.820125.1 | $C_6$ (as 6T1) | $0$ | $1$ |
| *12 | 1.315.12t1.a.b | $1$ | $ 3^{2} \cdot 5 \cdot 7 $ | 12.12.9891413435408203125.1 | $C_{12}$ (as 12T1) | $0$ | $1$ |
| *12 | 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
| *12 | 1.315.12t1.a.c | $1$ | $ 3^{2} \cdot 5 \cdot 7 $ | 12.12.9891413435408203125.1 | $C_{12}$ (as 12T1) | $0$ | $1$ |
| *12 | 1.45.6t1.a.b | $1$ | $ 3^{2} \cdot 5 $ | 6.6.820125.1 | $C_6$ (as 6T1) | $0$ | $1$ |
| *12 | 1.315.12t1.a.d | $1$ | $ 3^{2} \cdot 5 \cdot 7 $ | 12.12.9891413435408203125.1 | $C_{12}$ (as 12T1) | $0$ | $1$ |