Basic invariants
| Dimension: | $1$ |
| Group: | $C_{12}$ |
| Conductor: | \(315\)\(\medspace = 3^{2} \cdot 5 \cdot 7 \) |
| Artin field: | Galois closure of 12.12.9891413435408203125.1 |
| Galois orbit size: | $4$ |
| Smallest permutation container: | $C_{12}$ |
| Parity: | even |
| Dirichlet character: | \(\chi_{315}(223,\cdot)\) |
| Projective image: | $C_1$ |
| Projective field: | Galois closure of \(\Q\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{12} - 3 x^{11} - 36 x^{10} + 106 x^{9} + 393 x^{8} - 1164 x^{7} - 1350 x^{6} + 4794 x^{5} + \cdots - 1349 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$:
\( x^{4} + 7x^{2} + 10x + 3 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 9 a^{3} + 2 a^{2} + 2 a + 4 + \left(13 a^{3} + 10 a^{2} + 9 a + 9\right)\cdot 17 + \left(5 a^{3} + 7 a^{2} + 14 a + 3\right)\cdot 17^{2} + \left(4 a^{3} + 7 a^{2} + 8 a + 3\right)\cdot 17^{3} + \left(4 a^{3} + 5 a^{2} + 3 a + 9\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 16 a^{3} + 16 a^{2} + 11 a + 6 + \left(14 a^{3} + 8 a^{2} + 8 a + 12\right)\cdot 17 + \left(10 a^{3} + 9 a^{2} + 12 a + 13\right)\cdot 17^{2} + \left(13 a^{2} + 4 a + 7\right)\cdot 17^{3} + \left(12 a^{3} + 13 a^{2} + 4 a + 5\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 13 a^{3} + 8 a^{2} + 5 a + 15 + \left(2 a^{3} + 14 a^{2} + a + 16\right)\cdot 17 + \left(16 a^{3} + 11 a^{2} + 7 a + 1\right)\cdot 17^{2} + \left(4 a^{2} + 3 a + 13\right)\cdot 17^{3} + \left(11 a^{3} + 3 a^{2} + 7 a + 3\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 16 a^{3} + 16 a^{2} + 11 a + 5 + \left(14 a^{3} + 8 a^{2} + 8 a + 15\right)\cdot 17 + \left(10 a^{3} + 9 a^{2} + 12 a + 14\right)\cdot 17^{2} + \left(13 a^{2} + 4 a + 11\right)\cdot 17^{3} + \left(12 a^{3} + 13 a^{2} + 4 a + 11\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 13 a^{3} + 8 a^{2} + 5 a + 14 + \left(2 a^{3} + 14 a^{2} + a + 2\right)\cdot 17 + \left(16 a^{3} + 11 a^{2} + 7 a + 3\right)\cdot 17^{2} + \left(4 a^{2} + 3 a\right)\cdot 17^{3} + \left(11 a^{3} + 3 a^{2} + 7 a + 10\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 13 a^{3} + 8 a^{2} + 16 a + 15 + \left(2 a^{3} + 14 a + 1\right)\cdot 17 + \left(a^{3} + 5 a^{2} + 16 a + 10\right)\cdot 17^{2} + \left(11 a^{3} + 8 a^{2} + 16 a + 16\right)\cdot 17^{3} + \left(6 a^{3} + 11 a^{2} + a + 7\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 7 }$ | $=$ |
\( 9 a^{3} + 2 a^{2} + 2 a + 15 + \left(13 a^{3} + 10 a^{2} + 9 a + 5\right)\cdot 17 + \left(5 a^{3} + 7 a^{2} + 14 a + 11\right)\cdot 17^{2} + \left(4 a^{3} + 7 a^{2} + 8 a + 5\right)\cdot 17^{3} + \left(4 a^{3} + 5 a^{2} + 3 a + 11\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 8 }$ | $=$ |
\( 13 a^{3} + 8 a^{2} + 5 a + 4 + \left(2 a^{3} + 14 a^{2} + a + 3\right)\cdot 17 + \left(16 a^{3} + 11 a^{2} + 7 a + 11\right)\cdot 17^{2} + \left(4 a^{2} + 3 a + 10\right)\cdot 17^{3} + \left(11 a^{3} + 3 a^{2} + 7 a + 1\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 9 }$ | $=$ |
\( 13 a^{3} + 8 a^{2} + 16 a + 4 + \left(2 a^{3} + 14 a + 5\right)\cdot 17 + \left(a^{3} + 5 a^{2} + 16 a + 2\right)\cdot 17^{2} + \left(11 a^{3} + 8 a^{2} + 16 a + 14\right)\cdot 17^{3} + \left(6 a^{3} + 11 a^{2} + a + 5\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 10 }$ | $=$ |
\( 9 a^{3} + 2 a^{2} + 2 a + 14 + \left(13 a^{3} + 10 a^{2} + 9 a + 8\right)\cdot 17 + \left(5 a^{3} + 7 a^{2} + 14 a + 12\right)\cdot 17^{2} + \left(4 a^{3} + 7 a^{2} + 8 a + 9\right)\cdot 17^{3} + \left(4 a^{3} + 5 a^{2} + 3 a\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 11 }$ | $=$ |
\( 16 a^{3} + 16 a^{2} + 11 a + 12 + \left(14 a^{3} + 8 a^{2} + 8 a + 15\right)\cdot 17 + \left(10 a^{3} + 9 a^{2} + 12 a + 5\right)\cdot 17^{2} + \left(13 a^{2} + 4 a + 5\right)\cdot 17^{3} + \left(12 a^{3} + 13 a^{2} + 4 a + 3\right)\cdot 17^{4} +O(17^{5})\)
|
| $r_{ 12 }$ | $=$ |
\( 13 a^{3} + 8 a^{2} + 16 a + 14 + \left(2 a^{3} + 14 a + 4\right)\cdot 17 + \left(a^{3} + 5 a^{2} + 16 a + 11\right)\cdot 17^{2} + \left(11 a^{3} + 8 a^{2} + 16 a + 3\right)\cdot 17^{3} + \left(6 a^{3} + 11 a^{2} + a + 14\right)\cdot 17^{4} +O(17^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $1$ | ✓ |
| $1$ | $2$ | $(1,8)(2,6)(3,7)(4,12)(5,10)(9,11)$ | $-1$ | |
| $1$ | $3$ | $(1,7,10)(2,4,11)(3,5,8)(6,12,9)$ | $-\zeta_{12}^{2}$ | |
| $1$ | $3$ | $(1,10,7)(2,11,4)(3,8,5)(6,9,12)$ | $\zeta_{12}^{2} - 1$ | |
| $1$ | $4$ | $(1,9,8,11)(2,7,6,3)(4,10,12,5)$ | $-\zeta_{12}^{3}$ | |
| $1$ | $4$ | $(1,11,8,9)(2,3,6,7)(4,5,12,10)$ | $\zeta_{12}^{3}$ | |
| $1$ | $6$ | $(1,5,7,8,10,3)(2,9,4,6,11,12)$ | $-\zeta_{12}^{2} + 1$ | |
| $1$ | $6$ | $(1,3,10,8,7,5)(2,12,11,6,4,9)$ | $\zeta_{12}^{2}$ | |
| $1$ | $12$ | $(1,2,5,9,7,4,8,6,10,11,3,12)$ | $-\zeta_{12}^{3} + \zeta_{12}$ | |
| $1$ | $12$ | $(1,4,3,9,10,2,8,12,7,11,5,6)$ | $-\zeta_{12}$ | |
| $1$ | $12$ | $(1,6,5,11,7,12,8,2,10,9,3,4)$ | $\zeta_{12}^{3} - \zeta_{12}$ | |
| $1$ | $12$ | $(1,12,3,11,10,6,8,4,7,9,5,2)$ | $\zeta_{12}$ |