Properties

Label 1.315.12t1.a.a
Dimension $1$
Group $C_{12}$
Conductor $315$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_{12}$
Conductor: \(315\)\(\medspace = 3^{2} \cdot 5 \cdot 7 \)
Artin field: Galois closure of 12.12.9891413435408203125.1
Galois orbit size: $4$
Smallest permutation container: $C_{12}$
Parity: even
Dirichlet character: \(\chi_{315}(202,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{12} - 3 x^{11} - 36 x^{10} + 106 x^{9} + 393 x^{8} - 1164 x^{7} - 1350 x^{6} + 4794 x^{5} + \cdots - 1349 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{4} + 7x^{2} + 10x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 9 a^{3} + 2 a^{2} + 2 a + 4 + \left(13 a^{3} + 10 a^{2} + 9 a + 9\right)\cdot 17 + \left(5 a^{3} + 7 a^{2} + 14 a + 3\right)\cdot 17^{2} + \left(4 a^{3} + 7 a^{2} + 8 a + 3\right)\cdot 17^{3} + \left(4 a^{3} + 5 a^{2} + 3 a + 9\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 16 a^{3} + 16 a^{2} + 11 a + 6 + \left(14 a^{3} + 8 a^{2} + 8 a + 12\right)\cdot 17 + \left(10 a^{3} + 9 a^{2} + 12 a + 13\right)\cdot 17^{2} + \left(13 a^{2} + 4 a + 7\right)\cdot 17^{3} + \left(12 a^{3} + 13 a^{2} + 4 a + 5\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 a^{3} + 8 a^{2} + 5 a + 15 + \left(2 a^{3} + 14 a^{2} + a + 16\right)\cdot 17 + \left(16 a^{3} + 11 a^{2} + 7 a + 1\right)\cdot 17^{2} + \left(4 a^{2} + 3 a + 13\right)\cdot 17^{3} + \left(11 a^{3} + 3 a^{2} + 7 a + 3\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 16 a^{3} + 16 a^{2} + 11 a + 5 + \left(14 a^{3} + 8 a^{2} + 8 a + 15\right)\cdot 17 + \left(10 a^{3} + 9 a^{2} + 12 a + 14\right)\cdot 17^{2} + \left(13 a^{2} + 4 a + 11\right)\cdot 17^{3} + \left(12 a^{3} + 13 a^{2} + 4 a + 11\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 13 a^{3} + 8 a^{2} + 5 a + 14 + \left(2 a^{3} + 14 a^{2} + a + 2\right)\cdot 17 + \left(16 a^{3} + 11 a^{2} + 7 a + 3\right)\cdot 17^{2} + \left(4 a^{2} + 3 a\right)\cdot 17^{3} + \left(11 a^{3} + 3 a^{2} + 7 a + 10\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 13 a^{3} + 8 a^{2} + 16 a + 15 + \left(2 a^{3} + 14 a + 1\right)\cdot 17 + \left(a^{3} + 5 a^{2} + 16 a + 10\right)\cdot 17^{2} + \left(11 a^{3} + 8 a^{2} + 16 a + 16\right)\cdot 17^{3} + \left(6 a^{3} + 11 a^{2} + a + 7\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 9 a^{3} + 2 a^{2} + 2 a + 15 + \left(13 a^{3} + 10 a^{2} + 9 a + 5\right)\cdot 17 + \left(5 a^{3} + 7 a^{2} + 14 a + 11\right)\cdot 17^{2} + \left(4 a^{3} + 7 a^{2} + 8 a + 5\right)\cdot 17^{3} + \left(4 a^{3} + 5 a^{2} + 3 a + 11\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 13 a^{3} + 8 a^{2} + 5 a + 4 + \left(2 a^{3} + 14 a^{2} + a + 3\right)\cdot 17 + \left(16 a^{3} + 11 a^{2} + 7 a + 11\right)\cdot 17^{2} + \left(4 a^{2} + 3 a + 10\right)\cdot 17^{3} + \left(11 a^{3} + 3 a^{2} + 7 a + 1\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 13 a^{3} + 8 a^{2} + 16 a + 4 + \left(2 a^{3} + 14 a + 5\right)\cdot 17 + \left(a^{3} + 5 a^{2} + 16 a + 2\right)\cdot 17^{2} + \left(11 a^{3} + 8 a^{2} + 16 a + 14\right)\cdot 17^{3} + \left(6 a^{3} + 11 a^{2} + a + 5\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( 9 a^{3} + 2 a^{2} + 2 a + 14 + \left(13 a^{3} + 10 a^{2} + 9 a + 8\right)\cdot 17 + \left(5 a^{3} + 7 a^{2} + 14 a + 12\right)\cdot 17^{2} + \left(4 a^{3} + 7 a^{2} + 8 a + 9\right)\cdot 17^{3} + \left(4 a^{3} + 5 a^{2} + 3 a\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 11 }$ $=$ \( 16 a^{3} + 16 a^{2} + 11 a + 12 + \left(14 a^{3} + 8 a^{2} + 8 a + 15\right)\cdot 17 + \left(10 a^{3} + 9 a^{2} + 12 a + 5\right)\cdot 17^{2} + \left(13 a^{2} + 4 a + 5\right)\cdot 17^{3} + \left(12 a^{3} + 13 a^{2} + 4 a + 3\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 12 }$ $=$ \( 13 a^{3} + 8 a^{2} + 16 a + 14 + \left(2 a^{3} + 14 a + 4\right)\cdot 17 + \left(a^{3} + 5 a^{2} + 16 a + 11\right)\cdot 17^{2} + \left(11 a^{3} + 8 a^{2} + 16 a + 3\right)\cdot 17^{3} + \left(6 a^{3} + 11 a^{2} + a + 14\right)\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,2,5,9,7,4,8,6,10,11,3,12)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,8)(2,6)(3,7)(4,12)(5,10)(9,11)$$-1$
$1$$3$$(1,7,10)(2,4,11)(3,5,8)(6,12,9)$$\zeta_{12}^{2} - 1$
$1$$3$$(1,10,7)(2,11,4)(3,8,5)(6,9,12)$$-\zeta_{12}^{2}$
$1$$4$$(1,9,8,11)(2,7,6,3)(4,10,12,5)$$\zeta_{12}^{3}$
$1$$4$$(1,11,8,9)(2,3,6,7)(4,5,12,10)$$-\zeta_{12}^{3}$
$1$$6$$(1,5,7,8,10,3)(2,9,4,6,11,12)$$\zeta_{12}^{2}$
$1$$6$$(1,3,10,8,7,5)(2,12,11,6,4,9)$$-\zeta_{12}^{2} + 1$
$1$$12$$(1,2,5,9,7,4,8,6,10,11,3,12)$$\zeta_{12}$
$1$$12$$(1,4,3,9,10,2,8,12,7,11,5,6)$$\zeta_{12}^{3} - \zeta_{12}$
$1$$12$$(1,6,5,11,7,12,8,2,10,9,3,4)$$-\zeta_{12}$
$1$$12$$(1,12,3,11,10,6,8,4,7,9,5,2)$$-\zeta_{12}^{3} + \zeta_{12}$