Normalized defining polynomial
\( x^{12} - x^{11} - 14 x^{10} + 37 x^{9} - 20 x^{8} - 276 x^{7} + 87 x^{6} + 408 x^{5} + 69 x^{4} + \cdots + 16 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[8, 2]$ |
| |
| Discriminant: |
\(1230006625291015625\)
\(\medspace = 5^{9}\cdot 229^{5}\)
|
| |
| Root discriminant: | \(32.17\) |
| |
| Galois root discriminant: | $5^{3/4}229^{1/2}\approx 50.59938571007813$ | ||
| Ramified primes: |
\(5\), \(229\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{1145}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{609068293233088}a^{11}+\frac{45451745559707}{609068293233088}a^{10}-\frac{58045938568877}{304534146616544}a^{9}-\frac{269686829958963}{609068293233088}a^{8}-\frac{2257897836173}{76133536654136}a^{7}+\frac{10863157584803}{152267073308272}a^{6}-\frac{146358307711833}{609068293233088}a^{5}-\frac{19303159184265}{152267073308272}a^{4}+\frac{14481806263445}{609068293233088}a^{3}+\frac{27839717261093}{152267073308272}a^{2}+\frac{196468786339937}{609068293233088}a+\frac{26868152641673}{152267073308272}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{655956019}{87146700992}a^{11}-\frac{175337983}{87146700992}a^{10}-\frac{4877350903}{43573350496}a^{9}+\frac{17615889495}{87146700992}a^{8}+\frac{757974301}{10893337624}a^{7}-\frac{48508468863}{21786675248}a^{6}-\frac{76248945627}{87146700992}a^{5}+\frac{85416239253}{21786675248}a^{4}+\frac{235841650607}{87146700992}a^{3}+\frac{1341294215}{21786675248}a^{2}-\frac{10021767117}{87146700992}a-\frac{13300753797}{21786675248}$, $\frac{11345184520}{732053237059}a^{11}-\frac{10336433390}{732053237059}a^{10}-\frac{156853474395}{732053237059}a^{9}+\frac{411253270915}{732053237059}a^{8}-\frac{247792006435}{732053237059}a^{7}-\frac{3136072922750}{732053237059}a^{6}+\frac{1038670274126}{732053237059}a^{5}+\frac{3248382466375}{732053237059}a^{4}+\frac{101600917120}{732053237059}a^{3}+\frac{3576850133870}{732053237059}a^{2}-\frac{1134933236880}{732053237059}a+\frac{476695039089}{732053237059}$, $\frac{1136574055}{87146700992}a^{11}-\frac{746655523}{87146700992}a^{10}-\frac{8204592507}{43573350496}a^{9}+\frac{36798804283}{87146700992}a^{8}-\frac{865777475}{10893337624}a^{7}-\frac{81837748683}{21786675248}a^{6}-\frac{2214044367}{87146700992}a^{5}+\frac{133061410577}{21786675248}a^{4}+\frac{193977994099}{87146700992}a^{3}+\frac{22286280115}{21786675248}a^{2}-\frac{71656761017}{87146700992}a-\frac{59497928369}{21786675248}$, $\frac{575205656191}{304534146616544}a^{11}+\frac{894168076277}{304534146616544}a^{10}-\frac{3976997087235}{152267073308272}a^{9}+\frac{863391567379}{304534146616544}a^{8}+\frac{2530674561287}{38066768327068}a^{7}-\frac{37841326850183}{76133536654136}a^{6}-\frac{345711406820727}{304534146616544}a^{5}-\frac{28170213148183}{76133536654136}a^{4}+\frac{460952993380331}{304534146616544}a^{3}+\frac{120544292370719}{76133536654136}a^{2}+\frac{272437313171119}{304534146616544}a-\frac{675607756449}{76133536654136}$, $\frac{1568145489037}{609068293233088}a^{11}-\frac{4476109599681}{609068293233088}a^{10}-\frac{12000396970825}{304534146616544}a^{9}+\frac{100275169238377}{609068293233088}a^{8}-\frac{9595158620149}{76133536654136}a^{7}-\frac{126118908766161}{152267073308272}a^{6}+\frac{10\cdots 71}{609068293233088}a^{5}+\frac{381362329107563}{152267073308272}a^{4}-\frac{221674135796207}{609068293233088}a^{3}-\frac{32159197396343}{152267073308272}a^{2}-\frac{10\cdots 15}{609068293233088}a-\frac{92622580960171}{152267073308272}$, $\frac{11220739766715}{609068293233088}a^{11}-\frac{24312653074215}{609068293233088}a^{10}-\frac{65192140008543}{304534146616544}a^{9}+\frac{563569890518143}{609068293233088}a^{8}-\frac{105555574731155}{76133536654136}a^{7}-\frac{530338777420343}{152267073308272}a^{6}+\frac{32\cdots 57}{609068293233088}a^{5}+\frac{469171929919709}{152267073308272}a^{4}-\frac{10\cdots 73}{609068293233088}a^{3}+\frac{46875767558639}{152267073308272}a^{2}-\frac{20\cdots 57}{609068293233088}a+\frac{54792191849619}{152267073308272}$, $\frac{6636909890525}{609068293233088}a^{11}-\frac{9548364513905}{609068293233088}a^{10}-\frac{41748828491001}{304534146616544}a^{9}+\frac{274922087864185}{609068293233088}a^{8}-\frac{39434946305793}{76133536654136}a^{7}-\frac{371117010938121}{152267073308272}a^{6}+\frac{940394796971819}{609068293233088}a^{5}+\frac{315538232072283}{152267073308272}a^{4}+\frac{390557558555169}{609068293233088}a^{3}+\frac{75392262414753}{152267073308272}a^{2}-\frac{604590147006915}{609068293233088}a-\frac{75238879018187}{152267073308272}$, $\frac{636700505629}{152267073308272}a^{11}-\frac{1418164522505}{152267073308272}a^{10}-\frac{3046518089817}{76133536654136}a^{9}+\frac{30657862023705}{152267073308272}a^{8}-\frac{4073969499628}{9516692081767}a^{7}-\frac{16768564289687}{38066768327068}a^{6}+\frac{128239857971795}{152267073308272}a^{5}-\frac{42014719644205}{38066768327068}a^{4}+\frac{114490719077793}{152267073308272}a^{3}+\frac{37799077767667}{38066768327068}a^{2}+\frac{138935078774053}{152267073308272}a+\frac{19699283275169}{38066768327068}$, $\frac{8033300600659}{609068293233088}a^{11}-\frac{17009358756479}{609068293233088}a^{10}-\frac{45980906675799}{304534146616544}a^{9}+\frac{395826752824247}{609068293233088}a^{8}-\frac{77088051425391}{76133536654136}a^{7}-\frac{362508614396503}{152267073308272}a^{6}+\frac{21\cdots 53}{609068293233088}a^{5}+\frac{203819779791829}{152267073308272}a^{4}-\frac{73385551894321}{609068293233088}a^{3}+\frac{137767062052255}{152267073308272}a^{2}-\frac{593724458252941}{609068293233088}a-\frac{147357603712885}{152267073308272}$
|
| |
| Regulator: | \( 37171.8222915 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{2}\cdot 37171.8222915 \cdot 2}{2\cdot\sqrt{1230006625291015625}}\cr\approx \mathstrut & 0.338734809844 \end{aligned}\]
Galois group
| A solvable group of order 96 |
| The 14 conjugacy class representatives for $C_4:S_4$ |
| Character table for $C_4:S_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.229.1, 6.6.6555125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }^{2}$ | ${\href{/padicField/3.12.0.1}{12} }$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }$ | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{5}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(229\)
| $\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ |