Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $54$ | |
| Group : | $C_4:S_4$ | |
| CHM label : | $[(1/2.2^{2})^{3}]D(6)_{4}$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,3), (1,2)(3,12)(4,11)(5,10)(6,9)(7,8), (2,3)(4,9)(5,8)(6,10)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 24: $S_4$, $D_{12}$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Low degree siblings
12T54, 16T191 x 2, 24T128 x 2, 24T170, 24T171 x 2, 24T172 x 2, 32T397Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $3$ | $2$ | $( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| $ 2, 2, 2, 2, 2, 1, 1 $ | $12$ | $2$ | $( 2, 3)( 4, 8)( 5, 9)( 6,11)( 7,10)$ |
| $ 4, 4, 2, 1, 1 $ | $12$ | $4$ | $( 2, 3)( 4, 8, 5, 9)( 6,11, 7,10)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3,12)( 4,10)( 5,11)( 6, 8)( 7, 9)$ |
| $ 4, 4, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3,12)( 4,10, 5,11)( 6, 8, 7, 9)$ |
| $ 4, 4, 4 $ | $6$ | $4$ | $( 1, 2,12, 3)( 4, 6, 5, 7)( 8,10, 9,11)$ |
| $ 4, 4, 4 $ | $2$ | $4$ | $( 1, 2,12, 3)( 4, 7, 5, 6)( 8,11, 9,10)$ |
| $ 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 4, 8)( 2, 7,11)( 3, 6,10)( 5, 9,12)$ |
| $ 6, 6 $ | $8$ | $6$ | $( 1, 4, 8,12, 5, 9)( 2, 7,11, 3, 6,10)$ |
| $ 12 $ | $8$ | $12$ | $( 1, 6, 9, 3, 5,11,12, 7, 8, 2, 4,10)$ |
| $ 12 $ | $8$ | $12$ | $( 1, 6, 9, 2, 4,10,12, 7, 8, 3, 5,11)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 187] |
| Character table: |
2 5 5 5 3 3 3 3 4 4 2 2 2 2 5
3 1 . . . . . . . 1 1 1 1 1 1
1a 2a 2b 2c 4a 2d 4b 4c 4d 3a 6a 12a 12b 2e
2P 1a 1a 1a 1a 2b 1a 2b 2e 2e 3a 3a 6a 6a 1a
3P 1a 2a 2b 2c 4a 2d 4b 4c 4d 1a 2e 4d 4d 2e
5P 1a 2a 2b 2c 4a 2d 4b 4c 4d 3a 6a 12b 12a 2e
7P 1a 2a 2b 2c 4a 2d 4b 4c 4d 3a 6a 12b 12a 2e
11P 1a 2a 2b 2c 4a 2d 4b 4c 4d 3a 6a 12a 12b 2e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1
X.3 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
X.4 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1
X.5 2 2 2 . . . . -2 -2 -1 -1 1 1 2
X.6 2 2 2 . . . . 2 2 -1 -1 -1 -1 2
X.7 2 -2 2 . . . . . . 2 -2 . . -2
X.8 2 -2 2 . . . . . . -1 1 A -A -2
X.9 2 -2 2 . . . . . . -1 1 -A A -2
X.10 3 -1 -1 -1 1 -1 1 -1 3 . . . . 3
X.11 3 -1 -1 -1 1 1 -1 1 -3 . . . . 3
X.12 3 -1 -1 1 -1 -1 1 1 -3 . . . . 3
X.13 3 -1 -1 1 -1 1 -1 -1 3 . . . . 3
X.14 6 2 -2 . . . . . . . . . . -6
A = -E(12)^7+E(12)^11
= Sqrt(3) = r3
|