Normalized defining polynomial
\( x^{12} - 7x^{10} - 4x^{9} + 14x^{8} + 21x^{7} - 2x^{6} - 28x^{5} - 20x^{4} + 4x^{3} + 14x^{2} + 7x + 1 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[8, 2]$ |
| |
| Discriminant: |
\(3531579275390625\)
\(\medspace = 3^{6}\cdot 5^{9}\cdot 29\cdot 31^{2}\cdot 89\)
|
| |
| Root discriminant: | \(19.75\) |
| |
| Galois root discriminant: | $3^{1/2}5^{3/4}29^{1/2}31^{1/2}89^{1/2}\approx 1638.1851312400668$ | ||
| Ramified primes: |
\(3\), \(5\), \(29\), \(31\), \(89\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{12905}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$2a^{11}-a^{10}-13a^{9}-a^{8}+25a^{7}+25a^{6}-11a^{5}-39a^{4}-17a^{3}+9a^{2}+16a+4$, $a$, $a^{11}-a^{10}-6a^{9}+2a^{8}+12a^{7}+9a^{6}-11a^{5}-17a^{4}-3a^{3}+7a^{2}+7a+1$, $a^{11}-8a^{9}-4a^{8}+21a^{7}+24a^{6}-16a^{5}-42a^{4}-15a^{3}+19a^{2}+20a+5$, $a^{11}-a^{10}-6a^{9}+3a^{8}+11a^{7}+4a^{6}-9a^{5}-11a^{4}+3a^{3}+4a^{2}+2a$, $a^{11}-a^{10}-6a^{9}+2a^{8}+11a^{7}+10a^{6}-6a^{5}-20a^{4}-9a^{3}+5a^{2}+11a+3$, $a^{11}-a^{10}-7a^{9}+3a^{8}+17a^{7}+7a^{6}-17a^{5}-23a^{4}-a^{3}+12a^{2}+10a+3$, $a^{11}-7a^{9}-5a^{8}+15a^{7}+27a^{6}-5a^{5}-39a^{4}-23a^{3}+12a^{2}+20a+6$, $a^{11}-7a^{9}-3a^{8}+14a^{7}+14a^{6}-5a^{5}-15a^{4}-6a^{3}+3a^{2}-1$
|
| |
| Regulator: | \( 2512.55345376 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{2}\cdot 2512.55345376 \cdot 1}{2\cdot\sqrt{3531579275390625}}\cr\approx \mathstrut & 0.213648838729 \end{aligned}\]
Galois group
$S_3\wr C_4$ (as 12T264):
| A solvable group of order 5184 |
| The 36 conjugacy class representatives for $S_3\wr C_4$ |
| Character table for $S_3\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 12.0.10729184571822861436640625.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.4.0.1}{4} }$ | R | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ | R | R | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.3.0.1}{3} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(29\)
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.3.1.0a1.1 | $x^{3} + 2 x + 27$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
|
\(31\)
| $\Q_{31}$ | $x + 28$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{31}$ | $x + 28$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{31}$ | $x + 28$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 31.1.2.1a1.2 | $x^{2} + 93$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 31.1.2.1a1.1 | $x^{2} + 31$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 31.2.1.0a1.1 | $x^{2} + 29 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 31.3.1.0a1.1 | $x^{3} + x + 28$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
|
\(89\)
| $\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{89}$ | $x + 86$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 89.2.1.0a1.1 | $x^{2} + 82 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 89.1.2.1a1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |