Group action invariants
| Degree $n$ : | $12$ | |
| Transitive number $t$ : | $264$ | |
| CHM label : | $[S(3)^{4}]4=S(3)wr4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (4,8), (4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 32: $C_2^3 : C_4 $ 64: $((C_8 : C_2):C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Low degree siblings
12T262, 18T482, 24T7730, 24T7731, 24T7732, 24T7733, 24T7734, 24T7735, 24T7736, 24T7744, 24T7745 x 2, 24T7746 x 2, 24T7747, 24T7748, 24T7749 x 2, 24T7750 x 2, 24T7751, 24T7752, 24T7753, 24T7754, 24T7786, 24T7787, 36T6231, 36T6232, 36T6233, 36T6234, 36T6235, 36T6236, 36T6237, 36T6269, 36T6291Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $16$ | $3$ | $( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1 $ | $8$ | $3$ | $( 2,10, 6)( 4,12, 8)$ |
| $ 3, 3, 3, 1, 1, 1 $ | $32$ | $3$ | $( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| $ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 8,12)$ |
| $ 3, 2, 1, 1, 1, 1, 1, 1, 1 $ | $24$ | $6$ | $( 3,11, 7)( 8,12)$ |
| $ 3, 2, 1, 1, 1, 1, 1, 1, 1 $ | $24$ | $6$ | $( 2,10, 6)( 8,12)$ |
| $ 3, 3, 2, 1, 1, 1, 1 $ | $48$ | $6$ | $( 2,10, 6)( 3,11, 7)( 8,12)$ |
| $ 3, 2, 1, 1, 1, 1, 1, 1, 1 $ | $24$ | $6$ | $( 1, 9, 5)( 8,12)$ |
| $ 3, 3, 2, 1, 1, 1, 1 $ | $48$ | $6$ | $( 1, 9, 5)( 3,11, 7)( 8,12)$ |
| $ 3, 3, 2, 1, 1, 1, 1 $ | $48$ | $6$ | $( 1, 9, 5)( 2,10, 6)( 8,12)$ |
| $ 3, 3, 3, 2, 1 $ | $96$ | $6$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 8,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $36$ | $2$ | $( 7,11)( 8,12)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 2,10, 6)( 7,11)( 8,12)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 1, 9, 5)( 7,11)( 8,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $144$ | $6$ | $( 1, 9, 5)( 2,10, 6)( 7,11)( 8,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 6,10)( 8,12)$ |
| $ 3, 2, 2, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 3,11, 7)( 6,10)( 8,12)$ |
| $ 3, 3, 2, 2, 1, 1 $ | $72$ | $6$ | $( 1, 9, 5)( 3,11, 7)( 6,10)( 8,12)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $108$ | $2$ | $( 6,10)( 7,11)( 8,12)$ |
| $ 3, 2, 2, 2, 1, 1, 1 $ | $216$ | $6$ | $( 1, 9, 5)( 6,10)( 7,11)( 8,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1 $ | $81$ | $2$ | $( 5, 9)( 6,10)( 7,11)( 8,12)$ |
| $ 2, 2, 2, 2, 2, 2 $ | $36$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
| $ 6, 2, 2, 2 $ | $144$ | $6$ | $( 1, 7)( 2, 4,10,12, 6, 8)( 3, 9)( 5,11)$ |
| $ 6, 6 $ | $144$ | $6$ | $( 1, 3, 9,11, 5, 7)( 2, 4,10,12, 6, 8)$ |
| $ 4, 2, 2, 2, 2 $ | $216$ | $4$ | $( 1, 7)( 2,12, 6, 8)( 3, 9)( 4,10)( 5,11)$ |
| $ 6, 4, 2 $ | $432$ | $12$ | $( 1, 3, 9,11, 5, 7)( 2,12, 6, 8)( 4,10)$ |
| $ 4, 4, 2, 2 $ | $324$ | $4$ | $( 1,11, 5, 7)( 2,12, 6, 8)( 3, 9)( 4,10)$ |
| $ 4, 4, 4 $ | $216$ | $4$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
| $ 12 $ | $432$ | $12$ | $( 1,12, 3, 6, 9, 8,11, 2, 5, 4, 7,10)$ |
| $ 8, 4 $ | $648$ | $8$ | $( 1, 4, 7,10)( 2, 5,12, 3, 6, 9, 8,11)$ |
| $ 4, 4, 4 $ | $216$ | $4$ | $( 1,10, 7, 4)( 2,11, 8, 5)( 3,12, 9, 6)$ |
| $ 12 $ | $432$ | $12$ | $( 1,10, 7,12, 9, 6, 3, 8, 5, 2,11, 4)$ |
| $ 8, 4 $ | $648$ | $8$ | $( 1,10, 7, 4)( 2,11,12, 9, 6, 3, 8, 5)$ |
Group invariants
| Order: | $5184=2^{6} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |