Properties

Label 12T264
Order \(5184\)
n \(12\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $12$
Transitive number $t$ :  $264$
CHM label :  $[S(3)^{4}]4=S(3)wr4$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (4,8), (4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_4\times C_2$
16:  $C_2^2:C_4$
32:  $C_2^3 : C_4 $
64:  $((C_8 : C_2):C_2):C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $C_4$

Degree 6: None

Low degree siblings

12T262, 18T482, 24T7730, 24T7731, 24T7732, 24T7733, 24T7734, 24T7735, 24T7736, 24T7744, 24T7745 x 2, 24T7746 x 2, 24T7747, 24T7748, 24T7749 x 2, 24T7750 x 2, 24T7751, 24T7752, 24T7753, 24T7754, 24T7786, 24T7787, 36T6231, 36T6232, 36T6233, 36T6234, 36T6235, 36T6236, 36T6237, 36T6269, 36T6291

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $8$ $3$ $( 4,12, 8)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $16$ $3$ $( 3,11, 7)( 4,12, 8)$
$ 3, 3, 1, 1, 1, 1, 1, 1 $ $8$ $3$ $( 2,10, 6)( 4,12, 8)$
$ 3, 3, 3, 1, 1, 1 $ $32$ $3$ $( 2,10, 6)( 3,11, 7)( 4,12, 8)$
$ 3, 3, 3, 3 $ $16$ $3$ $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$
$ 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $12$ $2$ $( 8,12)$
$ 3, 2, 1, 1, 1, 1, 1, 1, 1 $ $24$ $6$ $( 3,11, 7)( 8,12)$
$ 3, 2, 1, 1, 1, 1, 1, 1, 1 $ $24$ $6$ $( 2,10, 6)( 8,12)$
$ 3, 3, 2, 1, 1, 1, 1 $ $48$ $6$ $( 2,10, 6)( 3,11, 7)( 8,12)$
$ 3, 2, 1, 1, 1, 1, 1, 1, 1 $ $24$ $6$ $( 1, 9, 5)( 8,12)$
$ 3, 3, 2, 1, 1, 1, 1 $ $48$ $6$ $( 1, 9, 5)( 3,11, 7)( 8,12)$
$ 3, 3, 2, 1, 1, 1, 1 $ $48$ $6$ $( 1, 9, 5)( 2,10, 6)( 8,12)$
$ 3, 3, 3, 2, 1 $ $96$ $6$ $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 8,12)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $36$ $2$ $( 7,11)( 8,12)$
$ 3, 2, 2, 1, 1, 1, 1, 1 $ $72$ $6$ $( 2,10, 6)( 7,11)( 8,12)$
$ 3, 2, 2, 1, 1, 1, 1, 1 $ $72$ $6$ $( 1, 9, 5)( 7,11)( 8,12)$
$ 3, 3, 2, 2, 1, 1 $ $144$ $6$ $( 1, 9, 5)( 2,10, 6)( 7,11)( 8,12)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $18$ $2$ $( 6,10)( 8,12)$
$ 3, 2, 2, 1, 1, 1, 1, 1 $ $72$ $6$ $( 3,11, 7)( 6,10)( 8,12)$
$ 3, 3, 2, 2, 1, 1 $ $72$ $6$ $( 1, 9, 5)( 3,11, 7)( 6,10)( 8,12)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $108$ $2$ $( 6,10)( 7,11)( 8,12)$
$ 3, 2, 2, 2, 1, 1, 1 $ $216$ $6$ $( 1, 9, 5)( 6,10)( 7,11)( 8,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1 $ $81$ $2$ $( 5, 9)( 6,10)( 7,11)( 8,12)$
$ 2, 2, 2, 2, 2, 2 $ $36$ $2$ $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$
$ 6, 2, 2, 2 $ $144$ $6$ $( 1, 7)( 2, 4,10,12, 6, 8)( 3, 9)( 5,11)$
$ 6, 6 $ $144$ $6$ $( 1, 3, 9,11, 5, 7)( 2, 4,10,12, 6, 8)$
$ 4, 2, 2, 2, 2 $ $216$ $4$ $( 1, 7)( 2,12, 6, 8)( 3, 9)( 4,10)( 5,11)$
$ 6, 4, 2 $ $432$ $12$ $( 1, 3, 9,11, 5, 7)( 2,12, 6, 8)( 4,10)$
$ 4, 4, 2, 2 $ $324$ $4$ $( 1,11, 5, 7)( 2,12, 6, 8)( 3, 9)( 4,10)$
$ 4, 4, 4 $ $216$ $4$ $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$
$ 12 $ $432$ $12$ $( 1,12, 3, 6, 9, 8,11, 2, 5, 4, 7,10)$
$ 8, 4 $ $648$ $8$ $( 1, 4, 7,10)( 2, 5,12, 3, 6, 9, 8,11)$
$ 4, 4, 4 $ $216$ $4$ $( 1,10, 7, 4)( 2,11, 8, 5)( 3,12, 9, 6)$
$ 12 $ $432$ $12$ $( 1,10, 7,12, 9, 6, 3, 8, 5, 2,11, 4)$
$ 8, 4 $ $648$ $8$ $( 1,10, 7, 4)( 2,11,12, 9, 6, 3, 8, 5)$

Group invariants

Order:  $5184=2^{6} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.