Normalized defining polynomial
\( x^{12} - 12x^{10} - x^{9} + 54x^{8} + 9x^{7} - 112x^{6} - 27x^{5} + 105x^{4} + 31x^{3} - 36x^{2} - 12x + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(756680642578125\) \(\medspace = 3^{18}\cdot 5^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.37\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{3/2}5^{3/4}\approx 17.374382779324037$ | ||
Ramified primes: | \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(45=3^{2}\cdot 5\) | ||
Dirichlet character group: | $\lbrace$$\chi_{45}(32,·)$, $\chi_{45}(1,·)$, $\chi_{45}(2,·)$, $\chi_{45}(4,·)$, $\chi_{45}(38,·)$, $\chi_{45}(8,·)$, $\chi_{45}(34,·)$, $\chi_{45}(16,·)$, $\chi_{45}(17,·)$, $\chi_{45}(19,·)$, $\chi_{45}(23,·)$, $\chi_{45}(31,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a^{9}-9a^{7}+27a^{5}-30a^{3}+9a$, $a^{6}-6a^{4}+9a^{2}-3$, $a^{3}-3a-1$, $a^{7}-7a^{5}+14a^{3}-7a+1$, $a^{11}-11a^{9}+a^{8}+45a^{7}-8a^{6}-84a^{5}+20a^{4}+69a^{3}-15a^{2}-18a$, $a^{10}-10a^{8}+35a^{6}-50a^{4}+25a^{2}-2$, $a^{5}-5a^{3}+5a$, $a^{8}-8a^{6}+20a^{4}-16a^{2}+3$, $a^{10}-9a^{8}+a^{7}+27a^{6}-7a^{5}-30a^{4}+14a^{3}+9a^{2}-6a$, $a^{8}+a^{7}-8a^{6}-7a^{5}+19a^{4}+14a^{3}-12a^{2}-6a$, $a^{8}-8a^{6}+20a^{4}-17a^{2}+a+4$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 2075.03148059 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 2075.03148059 \cdot 1}{2\cdot\sqrt{756680642578125}}\cr\approx \mathstrut & 0.154489273245 \end{aligned}\]
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{15})^+\), 6.6.820125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | R | R | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.12.0.1}{12} }$ | ${\href{/padicField/17.4.0.1}{4} }^{3}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.3.0.1}{3} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.12.0.1}{12} }$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | 3.12.18.74 | $x^{12} + 12 x^{11} + 42 x^{10} + 42 x^{9} + 54 x^{8} + 18 x^{7} - 33 x^{6} - 252 x^{5} - 126 x^{3} + 882$ | $6$ | $2$ | $18$ | $C_{12}$ | $[2]_{2}^{2}$ |
\(5\) | 5.12.9.1 | $x^{12} - 30 x^{8} + 225 x^{4} + 1125$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.15.4t1.a.a | $1$ | $ 3 \cdot 5 $ | \(\Q(\zeta_{15})^+\) | $C_4$ (as 4T1) | $0$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.15.4t1.a.b | $1$ | $ 3 \cdot 5 $ | \(\Q(\zeta_{15})^+\) | $C_4$ (as 4T1) | $0$ | $1$ |
* | 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.45.12t1.b.a | $1$ | $ 3^{2} \cdot 5 $ | \(\Q(\zeta_{45})^+\) | $C_{12}$ (as 12T1) | $0$ | $1$ |
* | 1.45.6t1.a.a | $1$ | $ 3^{2} \cdot 5 $ | 6.6.820125.1 | $C_6$ (as 6T1) | $0$ | $1$ |
* | 1.45.12t1.b.b | $1$ | $ 3^{2} \cdot 5 $ | \(\Q(\zeta_{45})^+\) | $C_{12}$ (as 12T1) | $0$ | $1$ |
* | 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.45.12t1.b.c | $1$ | $ 3^{2} \cdot 5 $ | \(\Q(\zeta_{45})^+\) | $C_{12}$ (as 12T1) | $0$ | $1$ |
* | 1.45.6t1.a.b | $1$ | $ 3^{2} \cdot 5 $ | 6.6.820125.1 | $C_6$ (as 6T1) | $0$ | $1$ |
* | 1.45.12t1.b.d | $1$ | $ 3^{2} \cdot 5 $ | \(\Q(\zeta_{45})^+\) | $C_{12}$ (as 12T1) | $0$ | $1$ |