Normalized defining polynomial
\( x^{12} - 4 x^{11} + 28 x^{10} - 76 x^{9} + 359 x^{8} - 772 x^{7} + 2662 x^{6} - 4216 x^{5} + 11540 x^{4} - 13284 x^{3} + 37260 x^{2} - 26468 x + 52681 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2951578112000000000=2^{18}\cdot 5^{9}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(280=2^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(197,·)$, $\chi_{280}(9,·)$, $\chi_{280}(93,·)$, $\chi_{280}(81,·)$, $\chi_{280}(37,·)$, $\chi_{280}(53,·)$, $\chi_{280}(169,·)$, $\chi_{280}(121,·)$, $\chi_{280}(249,·)$, $\chi_{280}(253,·)$, $\chi_{280}(277,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{3008402} a^{10} + \frac{1479}{51869} a^{9} + \frac{600847}{3008402} a^{8} + \frac{473855}{3008402} a^{7} + \frac{530297}{3008402} a^{6} + \frac{519167}{3008402} a^{5} - \frac{598564}{1504201} a^{4} + \frac{201921}{1504201} a^{3} - \frac{674466}{1504201} a^{2} - \frac{430749}{3008402} a - \frac{238993}{3008402}$, $\frac{1}{411536520647842} a^{11} - \frac{5418327}{205768260323921} a^{10} + \frac{24069810190907}{411536520647842} a^{9} + \frac{88115747819655}{411536520647842} a^{8} - \frac{12911393564899}{205768260323921} a^{7} - \frac{21185525877925}{411536520647842} a^{6} + \frac{33157227985965}{411536520647842} a^{5} - \frac{19595352091404}{205768260323921} a^{4} - \frac{1420563531549}{5018738056681} a^{3} - \frac{3202154870861}{10037476113362} a^{2} - \frac{68262809540052}{205768260323921} a + \frac{59840150427593}{205768260323921}$
Class group and class number
$C_{146}$, which has order $146$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.8000.2, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.28 | $x^{12} - 52 x^{10} + 1100 x^{8} - 12000 x^{6} - 61072 x^{4} + 62144 x^{2} - 62144$ | $2$ | $6$ | $18$ | $C_{12}$ | $[3]^{6}$ |
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |