Normalized defining polynomial
\( x^{12} - 4 x^{11} + 28 x^{10} - 76 x^{9} + 359 x^{8} - 772 x^{7} + 2662 x^{6} - 4216 x^{5} + \cdots + 52681 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(2951578112000000000\)
\(\medspace = 2^{18}\cdot 5^{9}\cdot 7^{8}\)
|
| |
| Root discriminant: | \(34.61\) |
| |
| Galois root discriminant: | $2^{3/2}5^{3/4}7^{2/3}\approx 34.607576700316336$ | ||
| Ramified primes: |
\(2\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{12}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(280=2^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(197,·)$, $\chi_{280}(9,·)$, $\chi_{280}(93,·)$, $\chi_{280}(81,·)$, $\chi_{280}(37,·)$, $\chi_{280}(53,·)$, $\chi_{280}(169,·)$, $\chi_{280}(121,·)$, $\chi_{280}(249,·)$, $\chi_{280}(253,·)$, $\chi_{280}(277,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | 4.0.8000.2$^{2}$, 12.0.2951578112000000000.1$^{30}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{3008402}a^{10}+\frac{1479}{51869}a^{9}+\frac{600847}{3008402}a^{8}+\frac{473855}{3008402}a^{7}+\frac{530297}{3008402}a^{6}+\frac{519167}{3008402}a^{5}-\frac{598564}{1504201}a^{4}+\frac{201921}{1504201}a^{3}-\frac{674466}{1504201}a^{2}-\frac{430749}{3008402}a-\frac{238993}{3008402}$, $\frac{1}{411536520647842}a^{11}-\frac{5418327}{205768260323921}a^{10}+\frac{24069810190907}{411536520647842}a^{9}+\frac{88115747819655}{411536520647842}a^{8}-\frac{12911393564899}{205768260323921}a^{7}-\frac{21185525877925}{411536520647842}a^{6}+\frac{33157227985965}{411536520647842}a^{5}-\frac{19595352091404}{205768260323921}a^{4}-\frac{1420563531549}{5018738056681}a^{3}-\frac{3202154870861}{10037476113362}a^{2}-\frac{68262809540052}{205768260323921}a+\frac{59840150427593}{205768260323921}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{146}$, which has order $146$ |
| |
| Narrow class group: | $C_{146}$, which has order $146$ |
| |
| Relative class number: | $146$ |
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{14}{1504201}a^{11}+\frac{165}{1504201}a^{10}-\frac{375}{1504201}a^{9}+\frac{6225}{3008402}a^{8}-\frac{160}{51869}a^{7}+\frac{29911}{1504201}a^{6}-\frac{42098}{1504201}a^{5}+\frac{300915}{3008402}a^{4}-\frac{116140}{1504201}a^{3}+\frac{1145081}{3008402}a^{2}-\frac{321094}{1504201}a+\frac{4000071}{3008402}$, $\frac{824540520}{205768260323921}a^{11}-\frac{1305871736}{205768260323921}a^{10}+\frac{59760879800}{205768260323921}a^{9}-\frac{140414664715}{205768260323921}a^{8}+\frac{1035927455440}{205768260323921}a^{7}-\frac{1724766859760}{205768260323921}a^{6}+\frac{9864225104176}{205768260323921}a^{5}-\frac{12741280683680}{205768260323921}a^{4}+\frac{1315681787320}{5018738056681}a^{3}-\frac{977245359380}{5018738056681}a^{2}+\frac{88634281926320}{205768260323921}a+\frac{112461252296087}{205768260323921}$, $\frac{154300500}{205768260323921}a^{11}+\frac{28204902550}{205768260323921}a^{10}-\frac{52902379640}{205768260323921}a^{9}+\frac{628281454295}{205768260323921}a^{8}-\frac{906978865760}{205768260323921}a^{7}+\frac{7155202858210}{205768260323921}a^{6}-\frac{7012383177404}{205768260323921}a^{5}+\frac{47691626973925}{205768260323921}a^{4}-\frac{645190655120}{5018738056681}a^{3}+\frac{4023167893360}{5018738056681}a^{2}-\frac{55117568611400}{205768260323921}a+\frac{394773466855174}{205768260323921}$, $\frac{539958798}{205768260323921}a^{11}+\frac{15209159527}{411536520647842}a^{10}-\frac{79614638602}{205768260323921}a^{9}+\frac{529791529758}{205768260323921}a^{8}-\frac{2327744913182}{205768260323921}a^{7}+\frac{7970855182214}{205768260323921}a^{6}-\frac{25139958849811}{205768260323921}a^{5}+\frac{64789277101415}{205768260323921}a^{4}-\frac{3469337850348}{5018738056681}a^{3}+\frac{10560012128153}{10037476113362}a^{2}-\frac{238363837378709}{205768260323921}a+\frac{457812868320745}{411536520647842}$, $\frac{2739680614}{205768260323921}a^{11}+\frac{21265422229}{205768260323921}a^{10}+\frac{8462484425}{205768260323921}a^{9}+\frac{570724033795}{411536520647842}a^{8}+\frac{401195310000}{205768260323921}a^{7}+\frac{2366929951071}{205768260323921}a^{6}+\frac{4105398841518}{205768260323921}a^{5}+\frac{15681323017355}{411536520647842}a^{4}+\frac{928182883980}{5018738056681}a^{3}+\frac{1866050281201}{10037476113362}a^{2}+\frac{44709996687546}{205768260323921}a+\frac{772115101088365}{411536520647842}$
|
| |
| Regulator: | \( 104.882003477 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 104.882003477 \cdot 146}{2\cdot\sqrt{2951578112000000000}}\cr\approx \mathstrut & 0.274205337652 \end{aligned}\]
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.8000.2, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | R | R | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | ${\href{/padicField/17.12.0.1}{12} }$ | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.1.0.1}{1} }^{12}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.1.0.1}{1} }^{12}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.6.2.18a1.18 | $x^{12} + 2 x^{10} + 2 x^{9} + x^{8} + 4 x^{7} + 7 x^{6} + 2 x^{5} + 8 x^{4} + 14 x^{3} + x^{2} + 6 x + 7$ | $2$ | $6$ | $18$ | $C_{12}$ | $$[3]^{6}$$ |
|
\(5\)
| 5.3.4.9a1.1 | $x^{12} + 12 x^{10} + 12 x^{9} + 54 x^{8} + 108 x^{7} + 162 x^{6} + 324 x^{5} + 405 x^{4} + 432 x^{3} + 491 x^{2} + 324 x + 81$ | $4$ | $3$ | $9$ | $C_{12}$ | $$[\ ]_{4}^{3}$$ |
|
\(7\)
| 7.4.3.8a1.3 | $x^{12} + 15 x^{10} + 12 x^{9} + 84 x^{8} + 120 x^{7} + 263 x^{6} + 372 x^{5} + 492 x^{4} + 424 x^{3} + 279 x^{2} + 108 x + 34$ | $3$ | $4$ | $8$ | $C_{12}$ | $$[\ ]_{3}^{4}$$ |