Properties

Label 12.0.29515781120...0000.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{18}\cdot 5^{9}\cdot 7^{8}$
Root discriminant $34.61$
Ramified primes $2, 5, 7$
Class number $146$
Class group $[146]$
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![52681, -26468, 37260, -13284, 11540, -4216, 2662, -772, 359, -76, 28, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 28*x^10 - 76*x^9 + 359*x^8 - 772*x^7 + 2662*x^6 - 4216*x^5 + 11540*x^4 - 13284*x^3 + 37260*x^2 - 26468*x + 52681)
 
gp: K = bnfinit(x^12 - 4*x^11 + 28*x^10 - 76*x^9 + 359*x^8 - 772*x^7 + 2662*x^6 - 4216*x^5 + 11540*x^4 - 13284*x^3 + 37260*x^2 - 26468*x + 52681, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} + 28 x^{10} - 76 x^{9} + 359 x^{8} - 772 x^{7} + 2662 x^{6} - 4216 x^{5} + 11540 x^{4} - 13284 x^{3} + 37260 x^{2} - 26468 x + 52681 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2951578112000000000=2^{18}\cdot 5^{9}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(280=2^{3}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(197,·)$, $\chi_{280}(9,·)$, $\chi_{280}(93,·)$, $\chi_{280}(81,·)$, $\chi_{280}(37,·)$, $\chi_{280}(53,·)$, $\chi_{280}(169,·)$, $\chi_{280}(121,·)$, $\chi_{280}(249,·)$, $\chi_{280}(253,·)$, $\chi_{280}(277,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{3008402} a^{10} + \frac{1479}{51869} a^{9} + \frac{600847}{3008402} a^{8} + \frac{473855}{3008402} a^{7} + \frac{530297}{3008402} a^{6} + \frac{519167}{3008402} a^{5} - \frac{598564}{1504201} a^{4} + \frac{201921}{1504201} a^{3} - \frac{674466}{1504201} a^{2} - \frac{430749}{3008402} a - \frac{238993}{3008402}$, $\frac{1}{411536520647842} a^{11} - \frac{5418327}{205768260323921} a^{10} + \frac{24069810190907}{411536520647842} a^{9} + \frac{88115747819655}{411536520647842} a^{8} - \frac{12911393564899}{205768260323921} a^{7} - \frac{21185525877925}{411536520647842} a^{6} + \frac{33157227985965}{411536520647842} a^{5} - \frac{19595352091404}{205768260323921} a^{4} - \frac{1420563531549}{5018738056681} a^{3} - \frac{3202154870861}{10037476113362} a^{2} - \frac{68262809540052}{205768260323921} a + \frac{59840150427593}{205768260323921}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{146}$, which has order $146$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 104.882003477 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{12}$ (as 12T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.8000.2, 6.6.300125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }$ R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/23.12.0.1}{12} }$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.12.0.1}{12} }$ ${\href{/LocalNumberField/53.12.0.1}{12} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.18.28$x^{12} - 52 x^{10} + 1100 x^{8} - 12000 x^{6} - 61072 x^{4} + 62144 x^{2} - 62144$$2$$6$$18$$C_{12}$$[3]^{6}$
$5$5.12.9.1$x^{12} - 10 x^{8} - 375 x^{4} - 2000$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
$7$7.12.8.1$x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$