Normalized defining polynomial
\( x^{12} - x^{11} + 53 x^{10} - 11 x^{9} + 1303 x^{8} + 438 x^{7} + 18804 x^{6} + 9784 x^{5} + \cdots + 2139101 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(271773988103064453125\) \(\medspace = 5^{9}\cdot 7^{8}\cdot 17^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(50.45\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}7^{2/3}17^{1/2}\approx 50.448778734178404$ | ||
Ramified primes: | \(5\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(595=5\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{595}(256,·)$, $\chi_{595}(1,·)$, $\chi_{595}(67,·)$, $\chi_{595}(324,·)$, $\chi_{595}(492,·)$, $\chi_{595}(494,·)$, $\chi_{595}(288,·)$, $\chi_{595}(373,·)$, $\chi_{595}(86,·)$, $\chi_{595}(407,·)$, $\chi_{595}(239,·)$, $\chi_{595}(543,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.36125.1$^{2}$, 12.0.271773988103064453125.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{29}a^{7}-\frac{4}{29}a^{6}+\frac{4}{29}a^{5}-\frac{10}{29}a^{4}+\frac{7}{29}a^{3}-\frac{11}{29}a^{2}+\frac{8}{29}a+\frac{5}{29}$, $\frac{1}{29}a^{8}-\frac{12}{29}a^{6}+\frac{6}{29}a^{5}-\frac{4}{29}a^{4}-\frac{12}{29}a^{3}-\frac{7}{29}a^{2}+\frac{8}{29}a-\frac{9}{29}$, $\frac{1}{29}a^{9}-\frac{13}{29}a^{6}-\frac{14}{29}a^{5}+\frac{13}{29}a^{4}-\frac{10}{29}a^{3}-\frac{8}{29}a^{2}+\frac{2}{29}$, $\frac{1}{29}a^{10}-\frac{8}{29}a^{6}+\frac{7}{29}a^{5}+\frac{5}{29}a^{4}-\frac{4}{29}a^{3}+\frac{2}{29}a^{2}-\frac{10}{29}a+\frac{7}{29}$, $\frac{1}{11\!\cdots\!39}a^{11}-\frac{48\!\cdots\!15}{40\!\cdots\!91}a^{10}+\frac{46\!\cdots\!12}{11\!\cdots\!39}a^{9}+\frac{15\!\cdots\!61}{11\!\cdots\!39}a^{8}+\frac{23\!\cdots\!12}{11\!\cdots\!39}a^{7}-\frac{39\!\cdots\!37}{11\!\cdots\!39}a^{6}+\frac{12\!\cdots\!33}{11\!\cdots\!39}a^{5}-\frac{60\!\cdots\!39}{11\!\cdots\!39}a^{4}+\frac{43\!\cdots\!32}{40\!\cdots\!91}a^{3}+\frac{19\!\cdots\!57}{11\!\cdots\!39}a^{2}-\frac{11\!\cdots\!82}{11\!\cdots\!39}a+\frac{15\!\cdots\!28}{11\!\cdots\!39}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{962}$, which has order $962$ (assuming GRH)
Relative class number: $962$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1269530073}{544645043469941}a^{11}-\frac{97769500}{18780863567929}a^{10}+\frac{48823727828}{544645043469941}a^{9}-\frac{66433233759}{544645043469941}a^{8}+\frac{833247527752}{544645043469941}a^{7}-\frac{982514772374}{544645043469941}a^{6}+\frac{7605874835415}{544645043469941}a^{5}-\frac{14345995173038}{544645043469941}a^{4}+\frac{1522663426065}{18780863567929}a^{3}-\frac{104166015496291}{544645043469941}a^{2}+\frac{114126540599333}{544645043469941}a+\frac{25223255223958}{544645043469941}$, $\frac{57\!\cdots\!40}{11\!\cdots\!39}a^{11}+\frac{29\!\cdots\!24}{40\!\cdots\!91}a^{10}+\frac{38\!\cdots\!00}{11\!\cdots\!39}a^{9}+\frac{35\!\cdots\!95}{11\!\cdots\!39}a^{8}+\frac{14\!\cdots\!60}{11\!\cdots\!39}a^{7}+\frac{72\!\cdots\!50}{11\!\cdots\!39}a^{6}+\frac{27\!\cdots\!62}{11\!\cdots\!39}a^{5}+\frac{86\!\cdots\!35}{11\!\cdots\!39}a^{4}+\frac{95\!\cdots\!50}{40\!\cdots\!91}a^{3}+\frac{52\!\cdots\!75}{11\!\cdots\!39}a^{2}+\frac{93\!\cdots\!25}{11\!\cdots\!39}a+\frac{40\!\cdots\!16}{11\!\cdots\!39}$, $\frac{43\!\cdots\!65}{11\!\cdots\!39}a^{11}+\frac{13\!\cdots\!46}{40\!\cdots\!91}a^{10}+\frac{20\!\cdots\!00}{11\!\cdots\!39}a^{9}+\frac{43\!\cdots\!20}{11\!\cdots\!39}a^{8}+\frac{42\!\cdots\!90}{11\!\cdots\!39}a^{7}+\frac{13\!\cdots\!10}{11\!\cdots\!39}a^{6}+\frac{56\!\cdots\!27}{11\!\cdots\!39}a^{5}+\frac{17\!\cdots\!70}{11\!\cdots\!39}a^{4}+\frac{14\!\cdots\!35}{40\!\cdots\!91}a^{3}+\frac{11\!\cdots\!00}{11\!\cdots\!39}a^{2}+\frac{13\!\cdots\!25}{11\!\cdots\!39}a+\frac{39\!\cdots\!11}{11\!\cdots\!39}$, $\frac{71\!\cdots\!32}{11\!\cdots\!39}a^{11}-\frac{82\!\cdots\!54}{40\!\cdots\!91}a^{10}+\frac{30\!\cdots\!12}{11\!\cdots\!39}a^{9}+\frac{28\!\cdots\!59}{11\!\cdots\!39}a^{8}+\frac{61\!\cdots\!98}{11\!\cdots\!39}a^{7}+\frac{10\!\cdots\!64}{11\!\cdots\!39}a^{6}+\frac{73\!\cdots\!12}{11\!\cdots\!39}a^{5}+\frac{14\!\cdots\!68}{11\!\cdots\!39}a^{4}+\frac{18\!\cdots\!70}{40\!\cdots\!91}a^{3}+\frac{91\!\cdots\!11}{11\!\cdots\!39}a^{2}+\frac{15\!\cdots\!32}{11\!\cdots\!39}a+\frac{52\!\cdots\!32}{11\!\cdots\!39}$, $\frac{77\!\cdots\!72}{11\!\cdots\!39}a^{11}+\frac{21\!\cdots\!70}{40\!\cdots\!91}a^{10}+\frac{34\!\cdots\!12}{11\!\cdots\!39}a^{9}+\frac{63\!\cdots\!54}{11\!\cdots\!39}a^{8}+\frac{75\!\cdots\!58}{11\!\cdots\!39}a^{7}+\frac{18\!\cdots\!14}{11\!\cdots\!39}a^{6}+\frac{10\!\cdots\!74}{11\!\cdots\!39}a^{5}+\frac{23\!\cdots\!03}{11\!\cdots\!39}a^{4}+\frac{27\!\cdots\!20}{40\!\cdots\!91}a^{3}+\frac{14\!\cdots\!86}{11\!\cdots\!39}a^{2}+\frac{24\!\cdots\!57}{11\!\cdots\!39}a+\frac{56\!\cdots\!48}{11\!\cdots\!39}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 104.882003477 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 104.882003477 \cdot 962}{2\cdot\sqrt{271773988103064453125}}\cr\approx \mathstrut & 0.188287425628 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.36125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | ${\href{/padicField/3.12.0.1}{12} }$ | R | R | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.1.0.1}{1} }^{12}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.12.9.1 | $x^{12} - 30 x^{8} + 225 x^{4} + 1125$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(7\) | 7.12.8.1 | $x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.6.2 | $x^{12} + 578 x^{8} + 835210 x^{4} - 4259571 x^{2} + 72412707$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |