Properties

Label 961.2.g.j.338.1
Level $961$
Weight $2$
Character 961.338
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,-3,-14,-3,-11,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 338.1
Root \(-1.42343i\) of defining polynomial
Character \(\chi\) \(=\) 961.338
Dual form 961.2.g.j.816.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.86683 + 1.35633i) q^{2} +(-0.265787 + 2.52879i) q^{3} +(1.02738 - 3.16196i) q^{4} +(1.24923 - 2.16373i) q^{5} +(-2.93370 - 5.08132i) q^{6} +(-1.56687 + 0.333049i) q^{7} +(0.944583 + 2.90713i) q^{8} +(-3.38972 - 0.720507i) q^{9} +(0.602634 + 5.73368i) q^{10} +(-0.490912 - 0.545213i) q^{11} +(7.72288 + 3.43845i) q^{12} +(1.73206 - 0.771163i) q^{13} +(2.47336 - 2.74694i) q^{14} +(5.13960 + 3.73414i) q^{15} +(-0.326952 - 0.237545i) q^{16} +(2.93028 - 3.25441i) q^{17} +(7.30526 - 3.25251i) q^{18} +(-4.23705 - 1.88646i) q^{19} +(-5.55818 - 6.17299i) q^{20} +(-0.425758 - 4.05082i) q^{21} +(1.65594 + 0.351980i) q^{22} +(2.19973 + 6.77006i) q^{23} +(-7.60258 + 1.61598i) q^{24} +(-0.621150 - 1.07586i) q^{25} +(-2.18751 + 3.78887i) q^{26} +(0.365721 - 1.12557i) q^{27} +(-0.556691 + 5.29656i) q^{28} +(-0.104314 + 0.0757884i) q^{29} -14.6595 q^{30} -5.18091 q^{32} +(1.50921 - 1.09651i) q^{33} +(-1.05628 + 10.0499i) q^{34} +(-1.23676 + 3.80635i) q^{35} +(-5.76075 + 9.97791i) q^{36} +(4.21474 + 7.30014i) q^{37} +(10.4685 - 2.22515i) q^{38} +(1.48975 + 4.58499i) q^{39} +(7.47024 + 1.58785i) q^{40} +(0.770791 + 7.33358i) q^{41} +(6.28907 + 6.98472i) q^{42} +(-0.210565 - 0.0937494i) q^{43} +(-2.22830 + 0.992101i) q^{44} +(-5.79352 + 6.43435i) q^{45} +(-13.2889 - 9.65498i) q^{46} +(6.50168 + 4.72375i) q^{47} +(0.687602 - 0.763659i) q^{48} +(-4.05065 + 1.80346i) q^{49} +(2.61881 + 1.16597i) q^{50} +(7.45090 + 8.27507i) q^{51} +(-0.658896 - 6.26898i) q^{52} +(5.60893 + 1.19222i) q^{53} +(0.843912 + 2.59729i) q^{54} +(-1.79296 + 0.381105i) q^{55} +(-2.44826 - 4.24051i) q^{56} +(5.89661 - 10.2132i) q^{57} +(0.0919419 - 0.282968i) q^{58} +(-0.993409 + 9.45166i) q^{59} +(17.0875 - 12.4148i) q^{60} +7.84044 q^{61} +5.55122 q^{63} +(10.3258 - 7.50212i) q^{64} +(0.495153 - 4.71107i) q^{65} +(-1.33021 + 4.09397i) q^{66} +(-2.41329 + 4.17994i) q^{67} +(-7.27978 - 12.6090i) q^{68} +(-17.7047 + 3.76326i) q^{69} +(-2.85385 - 8.78324i) q^{70} +(3.33061 + 0.707943i) q^{71} +(-1.10726 - 10.5349i) q^{72} +(-1.80133 - 2.00058i) q^{73} +(-17.7696 - 7.91153i) q^{74} +(2.88573 - 1.28481i) q^{75} +(-10.3180 + 11.4593i) q^{76} +(0.950780 + 0.690782i) q^{77} +(-8.99987 - 6.53879i) q^{78} +(-3.02979 + 3.36492i) q^{79} +(-0.922421 + 0.410688i) q^{80} +(-6.74838 - 3.00457i) q^{81} +(-11.3857 - 12.6451i) q^{82} +(0.279128 + 2.65572i) q^{83} +(-13.2459 - 2.81551i) q^{84} +(-3.38106 - 10.4058i) q^{85} +(0.520243 - 0.110581i) q^{86} +(-0.163928 - 0.283932i) q^{87} +(1.12130 - 1.94214i) q^{88} +(0.681255 - 2.09669i) q^{89} +(2.08840 - 19.8698i) q^{90} +(-2.45708 + 1.78518i) q^{91} +23.6666 q^{92} -18.5445 q^{94} +(-9.37482 + 6.81121i) q^{95} +(1.37702 - 13.1015i) q^{96} +(3.79778 - 11.6884i) q^{97} +(5.11577 - 8.86077i) q^{98} +(1.27122 + 2.20182i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} - 3 q^{3} - 14 q^{4} - 3 q^{5} - 11 q^{6} - 13 q^{7} + 17 q^{8} + 5 q^{9} - 17 q^{10} + 7 q^{11} + 10 q^{12} - 8 q^{13} - 21 q^{14} - 14 q^{15} - 2 q^{16} - 9 q^{17} + 12 q^{18} - 29 q^{19}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{8}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86683 + 1.35633i −1.32005 + 0.959070i −0.320115 + 0.947379i \(0.603722\pi\)
−0.999932 + 0.0116917i \(0.996278\pi\)
\(3\) −0.265787 + 2.52879i −0.153452 + 1.46000i 0.598680 + 0.800988i \(0.295692\pi\)
−0.752132 + 0.659012i \(0.770975\pi\)
\(4\) 1.02738 3.16196i 0.513691 1.58098i
\(5\) 1.24923 2.16373i 0.558673 0.967649i −0.438935 0.898519i \(-0.644644\pi\)
0.997608 0.0691304i \(-0.0220225\pi\)
\(6\) −2.93370 5.08132i −1.19768 2.07444i
\(7\) −1.56687 + 0.333049i −0.592223 + 0.125881i −0.494267 0.869310i \(-0.664564\pi\)
−0.0979553 + 0.995191i \(0.531230\pi\)
\(8\) 0.944583 + 2.90713i 0.333960 + 1.02782i
\(9\) −3.38972 0.720507i −1.12991 0.240169i
\(10\) 0.602634 + 5.73368i 0.190570 + 1.81315i
\(11\) −0.490912 0.545213i −0.148016 0.164388i 0.664578 0.747219i \(-0.268612\pi\)
−0.812593 + 0.582831i \(0.801945\pi\)
\(12\) 7.72288 + 3.43845i 2.22940 + 0.992594i
\(13\) 1.73206 0.771163i 0.480387 0.213882i −0.152233 0.988345i \(-0.548646\pi\)
0.632620 + 0.774463i \(0.281980\pi\)
\(14\) 2.47336 2.74694i 0.661033 0.734152i
\(15\) 5.13960 + 3.73414i 1.32704 + 0.964150i
\(16\) −0.326952 0.237545i −0.0817381 0.0593862i
\(17\) 2.93028 3.25441i 0.710698 0.789310i −0.274343 0.961632i \(-0.588460\pi\)
0.985041 + 0.172322i \(0.0551269\pi\)
\(18\) 7.30526 3.25251i 1.72187 0.766625i
\(19\) −4.23705 1.88646i −0.972045 0.432783i −0.141625 0.989920i \(-0.545233\pi\)
−0.830420 + 0.557138i \(0.811900\pi\)
\(20\) −5.55818 6.17299i −1.24285 1.38032i
\(21\) −0.425758 4.05082i −0.0929081 0.883962i
\(22\) 1.65594 + 0.351980i 0.353047 + 0.0750425i
\(23\) 2.19973 + 6.77006i 0.458675 + 1.41166i 0.866766 + 0.498714i \(0.166194\pi\)
−0.408092 + 0.912941i \(0.633806\pi\)
\(24\) −7.60258 + 1.61598i −1.55187 + 0.329860i
\(25\) −0.621150 1.07586i −0.124230 0.215173i
\(26\) −2.18751 + 3.78887i −0.429005 + 0.743059i
\(27\) 0.365721 1.12557i 0.0703831 0.216617i
\(28\) −0.556691 + 5.29656i −0.105205 + 1.00096i
\(29\) −0.104314 + 0.0757884i −0.0193706 + 0.0140736i −0.597428 0.801922i \(-0.703811\pi\)
0.578058 + 0.815996i \(0.303811\pi\)
\(30\) −14.6595 −2.67644
\(31\) 0 0
\(32\) −5.18091 −0.915865
\(33\) 1.50921 1.09651i 0.262720 0.190877i
\(34\) −1.05628 + 10.0499i −0.181151 + 1.72354i
\(35\) −1.23676 + 3.80635i −0.209050 + 0.643390i
\(36\) −5.76075 + 9.97791i −0.960125 + 1.66298i
\(37\) 4.21474 + 7.30014i 0.692899 + 1.20014i 0.970884 + 0.239550i \(0.0770000\pi\)
−0.277985 + 0.960585i \(0.589667\pi\)
\(38\) 10.4685 2.22515i 1.69821 0.360967i
\(39\) 1.48975 + 4.58499i 0.238551 + 0.734186i
\(40\) 7.47024 + 1.58785i 1.18115 + 0.251061i
\(41\) 0.770791 + 7.33358i 0.120377 + 1.14531i 0.873293 + 0.487196i \(0.161980\pi\)
−0.752915 + 0.658117i \(0.771353\pi\)
\(42\) 6.28907 + 6.98472i 0.970424 + 1.07777i
\(43\) −0.210565 0.0937494i −0.0321108 0.0142967i 0.390618 0.920553i \(-0.372261\pi\)
−0.422729 + 0.906256i \(0.638928\pi\)
\(44\) −2.22830 + 0.992101i −0.335928 + 0.149565i
\(45\) −5.79352 + 6.43435i −0.863646 + 0.959177i
\(46\) −13.2889 9.65498i −1.95935 1.42355i
\(47\) 6.50168 + 4.72375i 0.948368 + 0.689030i 0.950420 0.310968i \(-0.100653\pi\)
−0.00205222 + 0.999998i \(0.500653\pi\)
\(48\) 0.687602 0.763659i 0.0992468 0.110225i
\(49\) −4.05065 + 1.80346i −0.578664 + 0.257638i
\(50\) 2.61881 + 1.16597i 0.370355 + 0.164893i
\(51\) 7.45090 + 8.27507i 1.04333 + 1.15874i
\(52\) −0.658896 6.26898i −0.0913725 0.869351i
\(53\) 5.60893 + 1.19222i 0.770446 + 0.163763i 0.576332 0.817216i \(-0.304483\pi\)
0.194114 + 0.980979i \(0.437817\pi\)
\(54\) 0.843912 + 2.59729i 0.114842 + 0.353447i
\(55\) −1.79296 + 0.381105i −0.241762 + 0.0513881i
\(56\) −2.44826 4.24051i −0.327162 0.566662i
\(57\) 5.89661 10.2132i 0.781025 1.35278i
\(58\) 0.0919419 0.282968i 0.0120726 0.0371555i
\(59\) −0.993409 + 9.45166i −0.129331 + 1.23050i 0.716706 + 0.697376i \(0.245649\pi\)
−0.846037 + 0.533125i \(0.821018\pi\)
\(60\) 17.0875 12.4148i 2.20599 1.60274i
\(61\) 7.84044 1.00387 0.501933 0.864907i \(-0.332623\pi\)
0.501933 + 0.864907i \(0.332623\pi\)
\(62\) 0 0
\(63\) 5.55122 0.699388
\(64\) 10.3258 7.50212i 1.29072 0.937765i
\(65\) 0.495153 4.71107i 0.0614162 0.584336i
\(66\) −1.33021 + 4.09397i −0.163738 + 0.503933i
\(67\) −2.41329 + 4.17994i −0.294830 + 0.510661i −0.974945 0.222444i \(-0.928596\pi\)
0.680115 + 0.733105i \(0.261930\pi\)
\(68\) −7.27978 12.6090i −0.882804 1.52906i
\(69\) −17.7047 + 3.76326i −2.13140 + 0.453043i
\(70\) −2.85385 8.78324i −0.341100 1.04980i
\(71\) 3.33061 + 0.707943i 0.395271 + 0.0840174i 0.401259 0.915965i \(-0.368573\pi\)
−0.00598824 + 0.999982i \(0.501906\pi\)
\(72\) −1.10726 10.5349i −0.130492 1.24155i
\(73\) −1.80133 2.00058i −0.210830 0.234150i 0.628450 0.777850i \(-0.283690\pi\)
−0.839280 + 0.543700i \(0.817023\pi\)
\(74\) −17.7696 7.91153i −2.06567 0.919697i
\(75\) 2.88573 1.28481i 0.333215 0.148357i
\(76\) −10.3180 + 11.4593i −1.18355 + 1.31447i
\(77\) 0.950780 + 0.690782i 0.108351 + 0.0787219i
\(78\) −8.99987 6.53879i −1.01903 0.740372i
\(79\) −3.02979 + 3.36492i −0.340878 + 0.378583i −0.889072 0.457768i \(-0.848649\pi\)
0.548194 + 0.836351i \(0.315316\pi\)
\(80\) −0.922421 + 0.410688i −0.103130 + 0.0459164i
\(81\) −6.74838 3.00457i −0.749820 0.333841i
\(82\) −11.3857 12.6451i −1.25734 1.39642i
\(83\) 0.279128 + 2.65572i 0.0306382 + 0.291503i 0.999103 + 0.0423518i \(0.0134850\pi\)
−0.968465 + 0.249151i \(0.919848\pi\)
\(84\) −13.2459 2.81551i −1.44525 0.307198i
\(85\) −3.38106 10.4058i −0.366728 1.12867i
\(86\) 0.520243 0.110581i 0.0560993 0.0119243i
\(87\) −0.163928 0.283932i −0.0175749 0.0304407i
\(88\) 1.12130 1.94214i 0.119531 0.207033i
\(89\) 0.681255 2.09669i 0.0722129 0.222248i −0.908436 0.418025i \(-0.862723\pi\)
0.980649 + 0.195776i \(0.0627226\pi\)
\(90\) 2.08840 19.8698i 0.220136 2.09446i
\(91\) −2.45708 + 1.78518i −0.257572 + 0.187137i
\(92\) 23.6666 2.46741
\(93\) 0 0
\(94\) −18.5445 −1.91272
\(95\) −9.37482 + 6.81121i −0.961837 + 0.698815i
\(96\) 1.37702 13.1015i 0.140541 1.33716i
\(97\) 3.79778 11.6884i 0.385606 1.18677i −0.550434 0.834879i \(-0.685538\pi\)
0.936040 0.351894i \(-0.114462\pi\)
\(98\) 5.11577 8.86077i 0.516771 0.895073i
\(99\) 1.27122 + 2.20182i 0.127763 + 0.221292i
\(100\) −4.03999 + 0.858727i −0.403999 + 0.0858727i
\(101\) 2.26952 + 6.98486i 0.225826 + 0.695020i 0.998207 + 0.0598605i \(0.0190656\pi\)
−0.772381 + 0.635159i \(0.780934\pi\)
\(102\) −25.1333 5.34224i −2.48857 0.528961i
\(103\) −0.584184 5.55814i −0.0575613 0.547659i −0.984862 0.173342i \(-0.944544\pi\)
0.927300 0.374318i \(-0.122123\pi\)
\(104\) 3.87794 + 4.30689i 0.380263 + 0.422325i
\(105\) −9.29675 4.13918i −0.907270 0.403943i
\(106\) −12.0880 + 5.38190i −1.17409 + 0.522737i
\(107\) 1.22060 1.35562i 0.118000 0.131052i −0.681250 0.732051i \(-0.738563\pi\)
0.799250 + 0.600998i \(0.205230\pi\)
\(108\) −3.18328 2.31279i −0.306312 0.222548i
\(109\) −9.51832 6.91546i −0.911689 0.662381i 0.0297521 0.999557i \(-0.490528\pi\)
−0.941442 + 0.337176i \(0.890528\pi\)
\(110\) 2.83024 3.14330i 0.269853 0.299702i
\(111\) −19.5808 + 8.71793i −1.85853 + 0.827469i
\(112\) 0.591407 + 0.263311i 0.0558827 + 0.0248806i
\(113\) 7.39693 + 8.21512i 0.695844 + 0.772813i 0.982709 0.185158i \(-0.0592796\pi\)
−0.286864 + 0.957971i \(0.592613\pi\)
\(114\) 2.84455 + 27.0641i 0.266417 + 2.53478i
\(115\) 17.3965 + 3.69775i 1.62224 + 0.344817i
\(116\) 0.132470 + 0.407700i 0.0122995 + 0.0378540i
\(117\) −6.42682 + 1.36606i −0.594160 + 0.126293i
\(118\) −10.9650 18.9920i −1.00941 1.74836i
\(119\) −3.50750 + 6.07518i −0.321532 + 0.556911i
\(120\) −6.00083 + 18.4687i −0.547799 + 1.68595i
\(121\) 1.09355 10.4044i 0.0994137 0.945858i
\(122\) −14.6368 + 10.6342i −1.32515 + 0.962777i
\(123\) −18.7500 −1.69063
\(124\) 0 0
\(125\) 9.38846 0.839730
\(126\) −10.3632 + 7.52929i −0.923225 + 0.670762i
\(127\) −0.134532 + 1.27998i −0.0119377 + 0.113580i −0.998868 0.0475679i \(-0.984853\pi\)
0.986930 + 0.161148i \(0.0515196\pi\)
\(128\) −5.89913 + 18.1557i −0.521414 + 1.60475i
\(129\) 0.293038 0.507557i 0.0258006 0.0446879i
\(130\) 5.46540 + 9.46635i 0.479347 + 0.830254i
\(131\) 7.84509 1.66753i 0.685429 0.145692i 0.147982 0.988990i \(-0.452722\pi\)
0.537447 + 0.843298i \(0.319389\pi\)
\(132\) −1.91657 5.89859i −0.166816 0.513406i
\(133\) 7.26720 + 1.54469i 0.630146 + 0.133942i
\(134\) −1.16418 11.0764i −0.100570 0.956859i
\(135\) −1.97857 2.19742i −0.170288 0.189124i
\(136\) 12.2289 + 5.44465i 1.04862 + 0.466875i
\(137\) 15.0523 6.70170i 1.28600 0.572565i 0.354077 0.935216i \(-0.384795\pi\)
0.931925 + 0.362651i \(0.118128\pi\)
\(138\) 27.9475 31.0388i 2.37905 2.64220i
\(139\) 5.93804 + 4.31424i 0.503658 + 0.365929i 0.810412 0.585860i \(-0.199243\pi\)
−0.306755 + 0.951789i \(0.599243\pi\)
\(140\) 10.7649 + 7.82114i 0.909799 + 0.661007i
\(141\) −13.6735 + 15.1859i −1.15151 + 1.27888i
\(142\) −7.17788 + 3.19580i −0.602354 + 0.268185i
\(143\) −1.27074 0.565769i −0.106264 0.0473120i
\(144\) 0.937123 + 1.04078i 0.0780936 + 0.0867317i
\(145\) 0.0336737 + 0.320384i 0.00279645 + 0.0266064i
\(146\) 6.07622 + 1.29154i 0.502872 + 0.106889i
\(147\) −3.48398 10.7226i −0.287354 0.884385i
\(148\) 27.4129 5.82679i 2.25333 0.478959i
\(149\) 3.18096 + 5.50959i 0.260595 + 0.451363i 0.966400 0.257043i \(-0.0827480\pi\)
−0.705805 + 0.708406i \(0.749415\pi\)
\(150\) −3.64454 + 6.31252i −0.297575 + 0.515415i
\(151\) 1.70724 5.25433i 0.138933 0.427592i −0.857248 0.514904i \(-0.827828\pi\)
0.996181 + 0.0873120i \(0.0278277\pi\)
\(152\) 1.48192 14.0995i 0.120200 1.14362i
\(153\) −12.2777 + 8.92024i −0.992590 + 0.721159i
\(154\) −2.71187 −0.218529
\(155\) 0 0
\(156\) 16.0281 1.28327
\(157\) −6.46767 + 4.69903i −0.516176 + 0.375024i −0.815161 0.579234i \(-0.803352\pi\)
0.298985 + 0.954258i \(0.403352\pi\)
\(158\) 1.09215 10.3911i 0.0868868 0.826673i
\(159\) −4.50565 + 13.8670i −0.357321 + 1.09972i
\(160\) −6.47215 + 11.2101i −0.511669 + 0.886236i
\(161\) −5.70146 9.87521i −0.449338 0.778276i
\(162\) 16.6733 3.54401i 1.30998 0.278444i
\(163\) −5.27350 16.2302i −0.413052 1.27124i −0.913981 0.405756i \(-0.867008\pi\)
0.500929 0.865488i \(-0.332992\pi\)
\(164\) 23.9804 + 5.09719i 1.87255 + 0.398024i
\(165\) −0.487191 4.63531i −0.0379277 0.360858i
\(166\) −4.12312 4.57919i −0.320016 0.355414i
\(167\) 22.2651 + 9.91307i 1.72293 + 0.767096i 0.996835 + 0.0794987i \(0.0253320\pi\)
0.726092 + 0.687598i \(0.241335\pi\)
\(168\) 11.3741 5.06407i 0.877530 0.390701i
\(169\) −6.29336 + 6.98948i −0.484104 + 0.537652i
\(170\) 20.4256 + 14.8401i 1.56657 + 1.13818i
\(171\) 13.0032 + 9.44737i 0.994379 + 0.722458i
\(172\) −0.512762 + 0.569480i −0.0390978 + 0.0434225i
\(173\) 8.19779 3.64989i 0.623267 0.277496i −0.0707063 0.997497i \(-0.522525\pi\)
0.693973 + 0.720001i \(0.255859\pi\)
\(174\) 0.691131 + 0.307711i 0.0523945 + 0.0233275i
\(175\) 1.33158 + 1.47887i 0.100658 + 0.111792i
\(176\) 0.0309923 + 0.294872i 0.00233614 + 0.0222268i
\(177\) −23.6373 5.02425i −1.77669 0.377646i
\(178\) 1.57201 + 4.83816i 0.117827 + 0.362635i
\(179\) −11.0438 + 2.34743i −0.825452 + 0.175455i −0.601223 0.799081i \(-0.705320\pi\)
−0.224229 + 0.974537i \(0.571986\pi\)
\(180\) 14.3930 + 24.9294i 1.07279 + 1.85813i
\(181\) −7.47052 + 12.9393i −0.555279 + 0.961772i 0.442602 + 0.896718i \(0.354055\pi\)
−0.997882 + 0.0650542i \(0.979278\pi\)
\(182\) 2.16567 6.66523i 0.160530 0.494060i
\(183\) −2.08389 + 19.8269i −0.154045 + 1.46564i
\(184\) −17.6036 + 12.7898i −1.29775 + 0.942874i
\(185\) 21.0607 1.54841
\(186\) 0 0
\(187\) −3.21286 −0.234947
\(188\) 21.6160 15.7050i 1.57651 1.14540i
\(189\) −0.198167 + 1.88544i −0.0144146 + 0.137145i
\(190\) 8.26294 25.4307i 0.599457 1.84494i
\(191\) −1.13046 + 1.95802i −0.0817975 + 0.141677i −0.904022 0.427486i \(-0.859399\pi\)
0.822225 + 0.569163i \(0.192733\pi\)
\(192\) 16.2269 + 28.1057i 1.17107 + 2.02836i
\(193\) −25.1034 + 5.33590i −1.80698 + 0.384086i −0.983158 0.182756i \(-0.941498\pi\)
−0.823826 + 0.566843i \(0.808165\pi\)
\(194\) 8.76347 + 26.9712i 0.629181 + 1.93642i
\(195\) 11.7817 + 2.50428i 0.843706 + 0.179335i
\(196\) 1.54091 + 14.6608i 0.110065 + 1.04720i
\(197\) 4.14574 + 4.60431i 0.295372 + 0.328044i 0.872504 0.488607i \(-0.162495\pi\)
−0.577132 + 0.816651i \(0.695828\pi\)
\(198\) −5.35956 2.38623i −0.380887 0.169582i
\(199\) 4.17429 1.85851i 0.295908 0.131747i −0.253413 0.967358i \(-0.581553\pi\)
0.549321 + 0.835612i \(0.314887\pi\)
\(200\) 2.54094 2.82200i 0.179672 0.199546i
\(201\) −9.92879 7.21369i −0.700323 0.508814i
\(202\) −13.7106 9.96132i −0.964673 0.700876i
\(203\) 0.138205 0.153493i 0.00970011 0.0107731i
\(204\) 33.8203 15.0578i 2.36790 1.05426i
\(205\) 16.8308 + 7.49355i 1.17551 + 0.523372i
\(206\) 8.62924 + 9.58374i 0.601227 + 0.667731i
\(207\) −2.57858 24.5335i −0.179223 1.70520i
\(208\) −0.749487 0.159308i −0.0519676 0.0110460i
\(209\) 1.05150 + 3.23618i 0.0727336 + 0.223851i
\(210\) 22.9695 4.88233i 1.58505 0.336912i
\(211\) 9.30839 + 16.1226i 0.640816 + 1.10993i 0.985251 + 0.171115i \(0.0547371\pi\)
−0.344435 + 0.938810i \(0.611930\pi\)
\(212\) 9.53225 16.5103i 0.654678 1.13394i
\(213\) −2.67547 + 8.23426i −0.183321 + 0.564203i
\(214\) −0.439991 + 4.18624i −0.0300772 + 0.286165i
\(215\) −0.465892 + 0.338490i −0.0317736 + 0.0230849i
\(216\) 3.61764 0.246149
\(217\) 0 0
\(218\) 27.1487 1.83874
\(219\) 5.53783 4.02347i 0.374212 0.271881i
\(220\) −0.637015 + 6.06079i −0.0429475 + 0.408618i
\(221\) 2.56575 7.89656i 0.172591 0.531180i
\(222\) 24.7296 42.8329i 1.65974 2.87475i
\(223\) 3.10748 + 5.38231i 0.208092 + 0.360426i 0.951113 0.308842i \(-0.0999413\pi\)
−0.743021 + 0.669268i \(0.766608\pi\)
\(224\) 8.11784 1.72550i 0.542396 0.115290i
\(225\) 1.33036 + 4.09441i 0.0886904 + 0.272961i
\(226\) −24.9512 5.30354i −1.65973 0.352786i
\(227\) 1.36387 + 12.9763i 0.0905230 + 0.861269i 0.941714 + 0.336413i \(0.109214\pi\)
−0.851191 + 0.524855i \(0.824119\pi\)
\(228\) −26.2357 29.1377i −1.73750 1.92969i
\(229\) −13.9571 6.21410i −0.922310 0.410639i −0.110045 0.993927i \(-0.535099\pi\)
−0.812266 + 0.583288i \(0.801766\pi\)
\(230\) −37.4917 + 16.6924i −2.47213 + 1.10066i
\(231\) −1.99955 + 2.22073i −0.131561 + 0.146113i
\(232\) −0.318860 0.231665i −0.0209342 0.0152096i
\(233\) −10.5668 7.67721i −0.692253 0.502951i 0.185147 0.982711i \(-0.440724\pi\)
−0.877400 + 0.479760i \(0.840724\pi\)
\(234\) 10.1449 11.2671i 0.663195 0.736553i
\(235\) 18.3430 8.16684i 1.19657 0.532746i
\(236\) 28.8651 + 12.8516i 1.87896 + 0.836567i
\(237\) −7.70391 8.55606i −0.500423 0.555776i
\(238\) −1.69204 16.0986i −0.109678 1.04352i
\(239\) −22.9300 4.87391i −1.48322 0.315267i −0.606039 0.795435i \(-0.707242\pi\)
−0.877177 + 0.480168i \(0.840576\pi\)
\(240\) −0.793379 2.44177i −0.0512124 0.157616i
\(241\) 24.1721 5.13793i 1.55706 0.330963i 0.652660 0.757651i \(-0.273653\pi\)
0.904399 + 0.426687i \(0.140319\pi\)
\(242\) 12.0704 + 20.9065i 0.775914 + 1.34392i
\(243\) 11.1668 19.3415i 0.716353 1.24076i
\(244\) 8.05513 24.7911i 0.515677 1.58709i
\(245\) −1.15798 + 11.0174i −0.0739806 + 0.703879i
\(246\) 35.0030 25.4312i 2.23171 1.62143i
\(247\) −8.79358 −0.559522
\(248\) 0 0
\(249\) −6.78996 −0.430296
\(250\) −17.5266 + 12.7339i −1.10848 + 0.805360i
\(251\) −2.42445 + 23.0671i −0.153030 + 1.45598i 0.601057 + 0.799206i \(0.294747\pi\)
−0.754087 + 0.656775i \(0.771920\pi\)
\(252\) 5.70323 17.5527i 0.359270 1.10572i
\(253\) 2.61125 4.52282i 0.164168 0.284348i
\(254\) −1.48493 2.57198i −0.0931729 0.161380i
\(255\) 27.2129 5.78428i 1.70414 0.362226i
\(256\) −5.72420 17.6173i −0.357763 1.10108i
\(257\) −15.0108 3.19064i −0.936345 0.199026i −0.285623 0.958342i \(-0.592201\pi\)
−0.650722 + 0.759316i \(0.725534\pi\)
\(258\) 0.141363 + 1.34498i 0.00880088 + 0.0837348i
\(259\) −9.03527 10.0347i −0.561424 0.623525i
\(260\) −14.3875 6.40572i −0.892274 0.397266i
\(261\) 0.408200 0.181743i 0.0252670 0.0112496i
\(262\) −12.3837 + 13.7535i −0.765069 + 0.849695i
\(263\) −5.50607 4.00039i −0.339519 0.246675i 0.404940 0.914343i \(-0.367292\pi\)
−0.744459 + 0.667668i \(0.767292\pi\)
\(264\) 4.61325 + 3.35173i 0.283926 + 0.206284i
\(265\) 9.58648 10.6469i 0.588893 0.654031i
\(266\) −15.6617 + 6.97305i −0.960282 + 0.427545i
\(267\) 5.12102 + 2.28003i 0.313401 + 0.139535i
\(268\) 10.7374 + 11.9251i 0.655893 + 0.728442i
\(269\) 1.09960 + 10.4620i 0.0670439 + 0.637881i 0.975515 + 0.219933i \(0.0705838\pi\)
−0.908471 + 0.417948i \(0.862750\pi\)
\(270\) 6.67408 + 1.41862i 0.406172 + 0.0863344i
\(271\) 0.487363 + 1.49995i 0.0296052 + 0.0911154i 0.964767 0.263105i \(-0.0847464\pi\)
−0.935162 + 0.354220i \(0.884746\pi\)
\(272\) −1.73113 + 0.367963i −0.104965 + 0.0223111i
\(273\) −3.86128 6.68794i −0.233695 0.404772i
\(274\) −19.0103 + 32.9268i −1.14845 + 1.98918i
\(275\) −0.281645 + 0.866813i −0.0169838 + 0.0522708i
\(276\) −6.29028 + 59.8480i −0.378630 + 3.60243i
\(277\) 9.79020 7.11300i 0.588236 0.427379i −0.253448 0.967349i \(-0.581565\pi\)
0.841684 + 0.539970i \(0.181565\pi\)
\(278\) −16.9368 −1.01580
\(279\) 0 0
\(280\) −12.2337 −0.731106
\(281\) 17.3718 12.6214i 1.03632 0.752927i 0.0667525 0.997770i \(-0.478736\pi\)
0.969563 + 0.244842i \(0.0787362\pi\)
\(282\) 4.92889 46.8952i 0.293511 2.79257i
\(283\) −0.212853 + 0.655094i −0.0126528 + 0.0389413i −0.957184 0.289482i \(-0.906517\pi\)
0.944531 + 0.328423i \(0.106517\pi\)
\(284\) 5.66030 9.80392i 0.335877 0.581756i
\(285\) −14.7324 25.5173i −0.872675 1.51152i
\(286\) 3.13962 0.667346i 0.185649 0.0394610i
\(287\) −3.65018 11.2341i −0.215463 0.663127i
\(288\) 17.5618 + 3.73288i 1.03484 + 0.219962i
\(289\) −0.227636 2.16581i −0.0133904 0.127401i
\(290\) −0.497410 0.552429i −0.0292089 0.0324398i
\(291\) 28.5481 + 12.7104i 1.67352 + 0.745098i
\(292\) −8.17641 + 3.64037i −0.478488 + 0.213037i
\(293\) 6.03012 6.69713i 0.352284 0.391251i −0.540793 0.841156i \(-0.681876\pi\)
0.893076 + 0.449905i \(0.148542\pi\)
\(294\) 21.0474 + 15.2918i 1.22751 + 0.891837i
\(295\) 19.2098 + 13.9568i 1.11844 + 0.812594i
\(296\) −17.2413 + 19.1484i −1.00213 + 1.11298i
\(297\) −0.793215 + 0.353162i −0.0460270 + 0.0204925i
\(298\) −13.4111 5.97102i −0.776886 0.345892i
\(299\) 9.03087 + 10.0298i 0.522269 + 0.580038i
\(300\) −1.09777 10.4445i −0.0633796 0.603016i
\(301\) 0.361151 + 0.0767651i 0.0208164 + 0.00442467i
\(302\) 3.93949 + 12.1245i 0.226692 + 0.697688i
\(303\) −18.2665 + 3.88266i −1.04938 + 0.223053i
\(304\) 0.937195 + 1.62327i 0.0537518 + 0.0931009i
\(305\) 9.79451 16.9646i 0.560832 0.971389i
\(306\) 10.8215 33.3051i 0.618623 1.90393i
\(307\) 3.27515 31.1610i 0.186923 1.77845i −0.351904 0.936036i \(-0.614466\pi\)
0.538827 0.842416i \(-0.318868\pi\)
\(308\) 3.16104 2.29663i 0.180117 0.130863i
\(309\) 14.2107 0.808416
\(310\) 0 0
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) −11.9219 + 8.66180i −0.674947 + 0.490378i
\(313\) −2.26500 + 21.5500i −0.128025 + 1.21808i 0.722210 + 0.691674i \(0.243127\pi\)
−0.850235 + 0.526404i \(0.823540\pi\)
\(314\) 5.70058 17.5446i 0.321702 0.990098i
\(315\) 6.93475 12.0113i 0.390729 0.676762i
\(316\) 7.52698 + 13.0371i 0.423426 + 0.733395i
\(317\) −0.993843 + 0.211248i −0.0558198 + 0.0118649i −0.235737 0.971817i \(-0.575750\pi\)
0.179917 + 0.983682i \(0.442417\pi\)
\(318\) −10.3969 31.9984i −0.583030 1.79438i
\(319\) 0.0925298 + 0.0196678i 0.00518067 + 0.00110119i
\(320\) −3.33328 31.7141i −0.186336 1.77287i
\(321\) 3.10365 + 3.44696i 0.173229 + 0.192390i
\(322\) 24.0377 + 10.7023i 1.33957 + 0.596414i
\(323\) −18.5550 + 8.26124i −1.03243 + 0.459668i
\(324\) −16.4335 + 18.2513i −0.912973 + 1.01396i
\(325\) −1.90553 1.38445i −0.105700 0.0767955i
\(326\) 31.8582 + 23.1463i 1.76446 + 1.28196i
\(327\) 20.0176 22.2318i 1.10698 1.22942i
\(328\) −20.5916 + 9.16796i −1.13698 + 0.506216i
\(329\) −11.7606 5.23614i −0.648381 0.288678i
\(330\) 7.19651 + 7.99254i 0.396155 + 0.439975i
\(331\) 2.78981 + 26.5432i 0.153342 + 1.45895i 0.752645 + 0.658426i \(0.228778\pi\)
−0.599304 + 0.800522i \(0.704556\pi\)
\(332\) 8.68405 + 1.84585i 0.476599 + 0.101304i
\(333\) −9.02697 27.7822i −0.494675 1.52245i
\(334\) −55.0106 + 11.6929i −3.01004 + 0.639805i
\(335\) 6.02951 + 10.4434i 0.329427 + 0.570584i
\(336\) −0.823049 + 1.42556i −0.0449010 + 0.0777708i
\(337\) −9.87048 + 30.3782i −0.537679 + 1.65481i 0.200108 + 0.979774i \(0.435871\pi\)
−0.737788 + 0.675033i \(0.764129\pi\)
\(338\) 2.26857 21.5840i 0.123394 1.17402i
\(339\) −22.7404 + 16.5218i −1.23509 + 0.897343i
\(340\) −36.3765 −1.97279
\(341\) 0 0
\(342\) −37.0885 −2.00552
\(343\) 14.8178 10.7658i 0.800088 0.581298i
\(344\) 0.0736457 0.700692i 0.00397071 0.0377788i
\(345\) −13.9746 + 43.0095i −0.752368 + 2.31555i
\(346\) −10.3534 + 17.9326i −0.556603 + 0.964065i
\(347\) 1.56066 + 2.70314i 0.0837804 + 0.145112i 0.904871 0.425686i \(-0.139967\pi\)
−0.821090 + 0.570798i \(0.806634\pi\)
\(348\) −1.06620 + 0.226627i −0.0571542 + 0.0121485i
\(349\) −6.80655 20.9484i −0.364346 1.12134i −0.950389 0.311063i \(-0.899315\pi\)
0.586043 0.810280i \(-0.300685\pi\)
\(350\) −4.49166 0.954732i −0.240089 0.0510326i
\(351\) −0.234550 2.23159i −0.0125193 0.119114i
\(352\) 2.54337 + 2.82470i 0.135562 + 0.150557i
\(353\) −4.50596 2.00618i −0.239828 0.106778i 0.283303 0.959030i \(-0.408570\pi\)
−0.523132 + 0.852252i \(0.675236\pi\)
\(354\) 50.9413 22.6805i 2.70750 1.20546i
\(355\) 5.69249 6.32215i 0.302126 0.335545i
\(356\) −5.92973 4.30820i −0.314275 0.228334i
\(357\) −14.4306 10.4845i −0.763750 0.554897i
\(358\) 17.4330 19.3613i 0.921361 1.02328i
\(359\) −0.329662 + 0.146775i −0.0173989 + 0.00774648i −0.415418 0.909631i \(-0.636365\pi\)
0.398019 + 0.917377i \(0.369698\pi\)
\(360\) −24.1779 10.7647i −1.27429 0.567350i
\(361\) 1.68038 + 1.86625i 0.0884410 + 0.0982237i
\(362\) −3.60381 34.2880i −0.189412 1.80214i
\(363\) 26.0200 + 5.53073i 1.36570 + 0.290288i
\(364\) 3.12029 + 9.60325i 0.163547 + 0.503347i
\(365\) −6.57899 + 1.39841i −0.344360 + 0.0731960i
\(366\) −23.0015 39.8398i −1.20231 2.08246i
\(367\) −14.6935 + 25.4498i −0.766992 + 1.32847i 0.172195 + 0.985063i \(0.444914\pi\)
−0.939187 + 0.343406i \(0.888419\pi\)
\(368\) 0.888987 2.73602i 0.0463416 0.142625i
\(369\) 2.67113 25.4141i 0.139054 1.32301i
\(370\) −39.3167 + 28.5653i −2.04398 + 1.48504i
\(371\) −9.18555 −0.476890
\(372\) 0 0
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) 5.99786 4.35770i 0.310142 0.225331i
\(375\) −2.49533 + 23.7415i −0.128858 + 1.22601i
\(376\) −7.59116 + 23.3632i −0.391484 + 1.20486i
\(377\) −0.122233 + 0.211713i −0.00629530 + 0.0109038i
\(378\) −2.18733 3.78857i −0.112504 0.194863i
\(379\) 2.40665 0.511550i 0.123622 0.0262766i −0.145685 0.989331i \(-0.546539\pi\)
0.269307 + 0.963054i \(0.413205\pi\)
\(380\) 11.9052 + 36.6405i 0.610725 + 1.87962i
\(381\) −3.20106 0.680405i −0.163995 0.0348582i
\(382\) −0.545341 5.18857i −0.0279021 0.265470i
\(383\) 12.7924 + 14.2074i 0.653660 + 0.725963i 0.975296 0.220900i \(-0.0708995\pi\)
−0.321636 + 0.946863i \(0.604233\pi\)
\(384\) −44.3440 19.7432i −2.26292 1.00752i
\(385\) 2.68241 1.19429i 0.136708 0.0608664i
\(386\) 39.6265 44.0097i 2.01694 2.24004i
\(387\) 0.646208 + 0.469497i 0.0328486 + 0.0238659i
\(388\) −33.0563 24.0168i −1.67818 1.21927i
\(389\) −3.52703 + 3.91716i −0.178827 + 0.198608i −0.825894 0.563826i \(-0.809329\pi\)
0.647066 + 0.762434i \(0.275996\pi\)
\(390\) −25.3911 + 11.3048i −1.28573 + 0.572443i
\(391\) 28.4784 + 12.6794i 1.44021 + 0.641224i
\(392\) −9.06907 10.0722i −0.458057 0.508724i
\(393\) 2.13171 + 20.2818i 0.107530 + 1.02308i
\(394\) −13.9843 2.97247i −0.704521 0.149751i
\(395\) 3.49587 + 10.7592i 0.175897 + 0.541354i
\(396\) 8.26811 1.75744i 0.415488 0.0883147i
\(397\) −8.46275 14.6579i −0.424733 0.735660i 0.571662 0.820489i \(-0.306299\pi\)
−0.996395 + 0.0848295i \(0.972965\pi\)
\(398\) −5.27193 + 9.13124i −0.264258 + 0.457708i
\(399\) −5.83773 + 17.9667i −0.292252 + 0.899460i
\(400\) −0.0524793 + 0.499307i −0.00262396 + 0.0249653i
\(401\) 30.7747 22.3591i 1.53682 1.11656i 0.584524 0.811377i \(-0.301281\pi\)
0.952293 0.305186i \(-0.0987186\pi\)
\(402\) 28.3195 1.41245
\(403\) 0 0
\(404\) 24.4175 1.21482
\(405\) −14.9314 + 10.8483i −0.741945 + 0.539055i
\(406\) −0.0498190 + 0.473996i −0.00247248 + 0.0235240i
\(407\) 1.91107 5.88166i 0.0947281 0.291543i
\(408\) −17.0187 + 29.4772i −0.842550 + 1.45934i
\(409\) 0.249342 + 0.431873i 0.0123292 + 0.0213547i 0.872124 0.489285i \(-0.162742\pi\)
−0.859795 + 0.510639i \(0.829409\pi\)
\(410\) −41.5839 + 8.83893i −2.05368 + 0.436524i
\(411\) 12.9465 + 39.8453i 0.638605 + 1.96542i
\(412\) −18.1748 3.86317i −0.895407 0.190325i
\(413\) −1.59132 15.1404i −0.0783038 0.745010i
\(414\) 38.0893 + 42.3024i 1.87199 + 2.07905i
\(415\) 6.09496 + 2.71365i 0.299190 + 0.133208i
\(416\) −8.97365 + 3.99533i −0.439970 + 0.195887i
\(417\) −12.4881 + 13.8694i −0.611544 + 0.679188i
\(418\) −6.35229 4.61521i −0.310701 0.225737i
\(419\) −10.9298 7.94098i −0.533957 0.387942i 0.287879 0.957667i \(-0.407050\pi\)
−0.821836 + 0.569725i \(0.807050\pi\)
\(420\) −22.6392 + 25.1434i −1.10468 + 1.22687i
\(421\) −28.2424 + 12.5743i −1.37645 + 0.612834i −0.955700 0.294343i \(-0.904899\pi\)
−0.420749 + 0.907177i \(0.638233\pi\)
\(422\) −39.2447 17.4729i −1.91040 0.850566i
\(423\) −18.6354 20.6967i −0.906083 1.00631i
\(424\) 1.83218 + 17.4320i 0.0889785 + 0.846574i
\(425\) −5.32144 1.13111i −0.258128 0.0548668i
\(426\) −6.17373 19.0008i −0.299118 0.920591i
\(427\) −12.2850 + 2.61125i −0.594512 + 0.126367i
\(428\) −3.03237 5.25223i −0.146575 0.253876i
\(429\) 1.76846 3.06306i 0.0853820 0.147886i
\(430\) 0.410636 1.26381i 0.0198026 0.0609462i
\(431\) 1.26007 11.9888i 0.0606954 0.577478i −0.921337 0.388765i \(-0.872902\pi\)
0.982032 0.188713i \(-0.0604316\pi\)
\(432\) −0.386948 + 0.281134i −0.0186170 + 0.0135261i
\(433\) 32.3919 1.55665 0.778327 0.627860i \(-0.216069\pi\)
0.778327 + 0.627860i \(0.216069\pi\)
\(434\) 0 0
\(435\) −0.819136 −0.0392745
\(436\) −31.6454 + 22.9917i −1.51554 + 1.10110i
\(437\) 3.45107 32.8348i 0.165087 1.57070i
\(438\) −4.88102 + 15.0222i −0.233224 + 0.717790i
\(439\) −6.18408 + 10.7111i −0.295150 + 0.511215i −0.975020 0.222118i \(-0.928703\pi\)
0.679870 + 0.733333i \(0.262036\pi\)
\(440\) −2.80151 4.85236i −0.133557 0.231327i
\(441\) 15.0300 3.19472i 0.715712 0.152129i
\(442\) 5.92053 + 18.2215i 0.281611 + 0.866709i
\(443\) 4.62019 + 0.982051i 0.219512 + 0.0466587i 0.316355 0.948641i \(-0.397541\pi\)
−0.0968428 + 0.995300i \(0.530874\pi\)
\(444\) 7.44876 + 70.8703i 0.353503 + 3.36335i
\(445\) −3.68562 4.09329i −0.174715 0.194041i
\(446\) −13.1013 5.83308i −0.620365 0.276204i
\(447\) −14.7781 + 6.57963i −0.698979 + 0.311206i
\(448\) −13.6806 + 15.1939i −0.646348 + 0.717843i
\(449\) −12.9315 9.39528i −0.610275 0.443390i 0.239236 0.970961i \(-0.423103\pi\)
−0.849511 + 0.527571i \(0.823103\pi\)
\(450\) −8.03692 5.83917i −0.378864 0.275261i
\(451\) 3.61998 4.02039i 0.170458 0.189313i
\(452\) 33.5753 14.9487i 1.57925 0.703128i
\(453\) 12.8334 + 5.71379i 0.602964 + 0.268457i
\(454\) −20.1463 22.3747i −0.945512 1.05010i
\(455\) 0.793175 + 7.54656i 0.0371846 + 0.353788i
\(456\) 35.2610 + 7.49495i 1.65125 + 0.350983i
\(457\) −1.40842 4.33468i −0.0658832 0.202768i 0.912696 0.408640i \(-0.133997\pi\)
−0.978579 + 0.205872i \(0.933997\pi\)
\(458\) 34.4839 7.32977i 1.61132 0.342498i
\(459\) −2.59141 4.48846i −0.120957 0.209503i
\(460\) 29.5650 51.2081i 1.37848 2.38759i
\(461\) 5.25050 16.1594i 0.244540 0.752618i −0.751171 0.660107i \(-0.770511\pi\)
0.995712 0.0925105i \(-0.0294892\pi\)
\(462\) 0.720780 6.85777i 0.0335337 0.319052i
\(463\) 22.1896 16.1217i 1.03124 0.749239i 0.0626822 0.998034i \(-0.480035\pi\)
0.968556 + 0.248795i \(0.0800345\pi\)
\(464\) 0.0521088 0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) 18.5350 13.4665i 0.857697 0.623153i −0.0695608 0.997578i \(-0.522160\pi\)
0.927257 + 0.374425i \(0.122160\pi\)
\(468\) −2.28337 + 21.7248i −0.105549 + 1.00423i
\(469\) 2.38919 7.35318i 0.110323 0.339538i
\(470\) −23.1663 + 40.1253i −1.06858 + 1.85084i
\(471\) −10.1639 17.6043i −0.468327 0.811165i
\(472\) −28.4155 + 6.03990i −1.30793 + 0.278009i
\(473\) 0.0522553 + 0.160825i 0.00240270 + 0.00739476i
\(474\) 25.9867 + 5.52365i 1.19361 + 0.253710i
\(475\) 0.602274 + 5.73025i 0.0276342 + 0.262922i
\(476\) 15.6059 + 17.3321i 0.715295 + 0.794416i
\(477\) −18.1537 8.08255i −0.831201 0.370074i
\(478\) 49.4169 22.0018i 2.26028 1.00634i
\(479\) 6.05366 6.72327i 0.276599 0.307194i −0.588799 0.808279i \(-0.700399\pi\)
0.865398 + 0.501085i \(0.167066\pi\)
\(480\) −26.6278 19.3462i −1.21539 0.883031i
\(481\) 12.9298 + 9.39403i 0.589547 + 0.428331i
\(482\) −38.1564 + 42.3769i −1.73797 + 1.93022i
\(483\) 26.4878 11.7931i 1.20523 0.536605i
\(484\) −31.7749 14.1471i −1.44431 0.643050i
\(485\) −20.5461 22.8188i −0.932952 1.03615i
\(486\) 5.38693 + 51.2532i 0.244356 + 2.32489i
\(487\) −23.1065 4.91143i −1.04705 0.222558i −0.347901 0.937531i \(-0.613106\pi\)
−0.699152 + 0.714973i \(0.746439\pi\)
\(488\) 7.40594 + 22.7931i 0.335251 + 1.03180i
\(489\) 42.4444 9.02183i 1.91940 0.407981i
\(490\) −12.7815 22.1383i −0.577411 1.00011i
\(491\) 4.61346 7.99074i 0.208202 0.360617i −0.742946 0.669351i \(-0.766572\pi\)
0.951148 + 0.308734i \(0.0999054\pi\)
\(492\) −19.2634 + 59.2867i −0.868462 + 2.67285i
\(493\) −0.0590225 + 0.561562i −0.00265824 + 0.0252915i
\(494\) 16.4161 11.9270i 0.738596 0.536621i
\(495\) 6.35220 0.285510
\(496\) 0 0
\(497\) −5.45442 −0.244664
\(498\) 12.6757 9.20943i 0.568011 0.412684i
\(499\) 2.97007 28.2583i 0.132958 1.26501i −0.700989 0.713172i \(-0.747258\pi\)
0.833948 0.551843i \(-0.186075\pi\)
\(500\) 9.64554 29.6859i 0.431362 1.32759i
\(501\) −30.9859 + 53.6692i −1.38435 + 2.39776i
\(502\) −26.7606 46.3506i −1.19438 2.06873i
\(503\) −17.8786 + 3.80022i −0.797170 + 0.169444i −0.588452 0.808532i \(-0.700262\pi\)
−0.208718 + 0.977976i \(0.566929\pi\)
\(504\) 5.24359 + 16.1381i 0.233568 + 0.718848i
\(505\) 17.9485 + 3.81507i 0.798698 + 0.169768i
\(506\) 1.25968 + 11.9851i 0.0559996 + 0.532801i
\(507\) −16.0023 17.7723i −0.710686 0.789297i
\(508\) 3.90903 + 1.74041i 0.173435 + 0.0772184i
\(509\) −9.48841 + 4.22451i −0.420566 + 0.187248i −0.606098 0.795390i \(-0.707266\pi\)
0.185532 + 0.982638i \(0.440599\pi\)
\(510\) −42.9564 + 47.7079i −1.90214 + 2.11254i
\(511\) 3.48875 + 2.53472i 0.154333 + 0.112130i
\(512\) 3.69272 + 2.68292i 0.163197 + 0.118569i
\(513\) −3.67293 + 4.07920i −0.162164 + 0.180101i
\(514\) 32.3501 14.4032i 1.42690 0.635297i
\(515\) −12.7561 5.67937i −0.562100 0.250263i
\(516\) −1.30381 1.44803i −0.0573972 0.0637460i
\(517\) −0.616305 5.86375i −0.0271051 0.257887i
\(518\) 30.4776 + 6.47822i 1.33911 + 0.284637i
\(519\) 7.05096 + 21.7006i 0.309503 + 0.952552i
\(520\) 14.1634 3.01052i 0.621105 0.132020i
\(521\) −4.62522 8.01111i −0.202635 0.350973i 0.746742 0.665114i \(-0.231617\pi\)
−0.949376 + 0.314141i \(0.898284\pi\)
\(522\) −0.515537 + 0.892937i −0.0225645 + 0.0390828i
\(523\) 2.03184 6.25335i 0.0888461 0.273440i −0.896755 0.442527i \(-0.854082\pi\)
0.985601 + 0.169087i \(0.0540820\pi\)
\(524\) 2.78726 26.5190i 0.121762 1.15849i
\(525\) −4.09367 + 2.97422i −0.178662 + 0.129806i
\(526\) 15.7047 0.684759
\(527\) 0 0
\(528\) −0.753909 −0.0328097
\(529\) −22.3875 + 16.2655i −0.973371 + 0.707195i
\(530\) −3.45565 + 32.8783i −0.150104 + 1.42814i
\(531\) 10.1774 31.3227i 0.441660 1.35929i
\(532\) 12.3504 21.3916i 0.535460 0.927443i
\(533\) 6.99044 + 12.1078i 0.302790 + 0.524447i
\(534\) −12.6525 + 2.68938i −0.547529 + 0.116381i
\(535\) −1.40837 4.33453i −0.0608893 0.187398i
\(536\) −14.4312 3.06744i −0.623331 0.132493i
\(537\) −3.00087 28.5514i −0.129497 1.23208i
\(538\) −16.2427 18.0394i −0.700273 0.777732i
\(539\) 2.97178 + 1.32312i 0.128004 + 0.0569910i
\(540\) −8.98091 + 3.99856i −0.386477 + 0.172071i
\(541\) −1.47428 + 1.63735i −0.0633842 + 0.0703953i −0.774003 0.633182i \(-0.781748\pi\)
0.710619 + 0.703577i \(0.248415\pi\)
\(542\) −2.94425 2.13912i −0.126466 0.0918831i
\(543\) −30.7353 22.3305i −1.31898 0.958294i
\(544\) −15.1815 + 16.8608i −0.650903 + 0.722902i
\(545\) −26.8538 + 11.9561i −1.15029 + 0.512141i
\(546\) 16.2794 + 7.24806i 0.696694 + 0.310188i
\(547\) −3.25428 3.61424i −0.139143 0.154534i 0.669546 0.742771i \(-0.266489\pi\)
−0.808689 + 0.588237i \(0.799822\pi\)
\(548\) −5.72606 54.4798i −0.244605 2.32726i
\(549\) −26.5769 5.64909i −1.13427 0.241097i
\(550\) −0.649903 2.00019i −0.0277119 0.0852886i
\(551\) 0.584954 0.124336i 0.0249199 0.00529689i
\(552\) −27.6639 47.9152i −1.17745 2.03941i
\(553\) 3.62661 6.28147i 0.154219 0.267115i
\(554\) −8.62905 + 26.5575i −0.366613 + 1.12832i
\(555\) −5.59766 + 53.2582i −0.237608 + 2.26068i
\(556\) 19.7421 14.3435i 0.837251 0.608298i
\(557\) −11.0363 −0.467623 −0.233811 0.972282i \(-0.575120\pi\)
−0.233811 + 0.972282i \(0.575120\pi\)
\(558\) 0 0
\(559\) −0.437007 −0.0184834
\(560\) 1.30854 0.950708i 0.0552958 0.0401748i
\(561\) 0.853936 8.12466i 0.0360532 0.343023i
\(562\) −15.3115 + 47.1238i −0.645875 + 1.98780i
\(563\) 5.59621 9.69292i 0.235852 0.408508i −0.723668 0.690148i \(-0.757545\pi\)
0.959520 + 0.281641i \(0.0908786\pi\)
\(564\) 33.9694 + 58.8366i 1.43037 + 2.47747i
\(565\) 27.0158 5.74238i 1.13656 0.241584i
\(566\) −0.491164 1.51165i −0.0206452 0.0635393i
\(567\) 11.5745 + 2.46024i 0.486085 + 0.103320i
\(568\) 1.08796 + 10.3512i 0.0456496 + 0.434327i
\(569\) 31.3969 + 34.8698i 1.31623 + 1.46182i 0.792410 + 0.609989i \(0.208826\pi\)
0.523818 + 0.851830i \(0.324507\pi\)
\(570\) 62.1129 + 27.6544i 2.60162 + 1.15832i
\(571\) 18.6908 8.32170i 0.782187 0.348252i 0.0235138 0.999724i \(-0.492515\pi\)
0.758673 + 0.651471i \(0.225848\pi\)
\(572\) −3.09447 + 3.43676i −0.129386 + 0.143698i
\(573\) −4.65097 3.37913i −0.194297 0.141165i
\(574\) 22.0514 + 16.0213i 0.920407 + 0.668715i
\(575\) 5.91730 6.57182i 0.246768 0.274064i
\(576\) −40.4068 + 17.9903i −1.68362 + 0.749595i
\(577\) 3.33293 + 1.48392i 0.138752 + 0.0617762i 0.474938 0.880019i \(-0.342470\pi\)
−0.336186 + 0.941796i \(0.609137\pi\)
\(578\) 3.36251 + 3.73445i 0.139862 + 0.155333i
\(579\) −6.82123 64.8996i −0.283480 2.69714i
\(580\) 1.04764 + 0.222682i 0.0435008 + 0.00924637i
\(581\) −1.32184 4.06822i −0.0548393 0.168778i
\(582\) −70.5338 + 14.9924i −2.92372 + 0.621456i
\(583\) −2.10348 3.64334i −0.0871173 0.150892i
\(584\) 4.11443 7.12641i 0.170256 0.294893i
\(585\) −5.07279 + 15.6124i −0.209734 + 0.645494i
\(586\) −2.17369 + 20.6812i −0.0897941 + 0.854334i
\(587\) −18.5043 + 13.4442i −0.763755 + 0.554901i −0.900060 0.435766i \(-0.856477\pi\)
0.136305 + 0.990667i \(0.456477\pi\)
\(588\) −37.4838 −1.54580
\(589\) 0 0
\(590\) −54.7914 −2.25573
\(591\) −12.7452 + 9.25996i −0.524269 + 0.380904i
\(592\) 0.356092 3.38799i 0.0146353 0.139245i
\(593\) −6.01340 + 18.5073i −0.246941 + 0.760005i 0.748371 + 0.663281i \(0.230837\pi\)
−0.995311 + 0.0967243i \(0.969163\pi\)
\(594\) 1.00179 1.73515i 0.0411040 0.0711943i
\(595\) 8.76336 + 15.1786i 0.359263 + 0.622261i
\(596\) 20.6892 4.39762i 0.847461 0.180133i
\(597\) 3.59033 + 11.0499i 0.146942 + 0.452242i
\(598\) −30.4628 6.47507i −1.24572 0.264785i
\(599\) −3.67646 34.9792i −0.150216 1.42921i −0.766782 0.641907i \(-0.778143\pi\)
0.616566 0.787303i \(-0.288523\pi\)
\(600\) 6.46091 + 7.17557i 0.263766 + 0.292942i
\(601\) −5.37901 2.39489i −0.219414 0.0976895i 0.294086 0.955779i \(-0.404985\pi\)
−0.513500 + 0.858089i \(0.671651\pi\)
\(602\) −0.778326 + 0.346533i −0.0317222 + 0.0141236i
\(603\) 11.1920 12.4300i 0.455775 0.506190i
\(604\) −14.8600 10.7964i −0.604645 0.439300i
\(605\) −21.1463 15.3637i −0.859719 0.624622i
\(606\) 28.8342 32.0237i 1.17131 1.30087i
\(607\) 35.5231 15.8159i 1.44184 0.641947i 0.471097 0.882081i \(-0.343858\pi\)
0.970740 + 0.240134i \(0.0771915\pi\)
\(608\) 21.9518 + 9.77356i 0.890262 + 0.396370i
\(609\) 0.351418 + 0.390289i 0.0142402 + 0.0158153i
\(610\) 4.72491 + 44.9546i 0.191306 + 1.82016i
\(611\) 14.9041 + 3.16796i 0.602955 + 0.128162i
\(612\) 15.5916 + 47.9859i 0.630252 + 1.93972i
\(613\) −44.6059 + 9.48127i −1.80161 + 0.382945i −0.981835 0.189736i \(-0.939237\pi\)
−0.819779 + 0.572681i \(0.805904\pi\)
\(614\) 36.1505 + 62.6144i 1.45891 + 2.52691i
\(615\) −23.4231 + 40.5699i −0.944509 + 1.63594i
\(616\) −1.11010 + 3.41654i −0.0447272 + 0.137656i
\(617\) 0.692656 6.59018i 0.0278853 0.265311i −0.971692 0.236250i \(-0.924082\pi\)
0.999578 0.0290609i \(-0.00925166\pi\)
\(618\) −26.5288 + 19.2743i −1.06715 + 0.775328i
\(619\) −41.5360 −1.66947 −0.834736 0.550650i \(-0.814380\pi\)
−0.834736 + 0.550650i \(0.814380\pi\)
\(620\) 0 0
\(621\) 8.42469 0.338071
\(622\) 33.0689 24.0260i 1.32594 0.963353i
\(623\) −0.369140 + 3.51213i −0.0147893 + 0.140711i
\(624\) 0.602062 1.85296i 0.0241018 0.0741776i
\(625\) 14.8341 25.6934i 0.593364 1.02774i
\(626\) −25.0006 43.3022i −0.999223 1.73071i
\(627\) −8.46310 + 1.79889i −0.337984 + 0.0718407i
\(628\) 8.21338 + 25.2782i 0.327750 + 1.00871i
\(629\) 36.1080 + 7.67500i 1.43972 + 0.306022i
\(630\) 3.34535 + 31.8289i 0.133282 + 1.26809i
\(631\) −7.45727 8.28213i −0.296869 0.329707i 0.576195 0.817312i \(-0.304537\pi\)
−0.873064 + 0.487606i \(0.837870\pi\)
\(632\) −12.6441 5.62953i −0.502956 0.223931i
\(633\) −43.2448 + 19.2538i −1.71883 + 0.765271i
\(634\) 1.56881 1.74234i 0.0623055 0.0691973i
\(635\) 2.60147 + 1.89008i 0.103236 + 0.0750056i
\(636\) 39.2177 + 28.4934i 1.55508 + 1.12983i
\(637\) −5.62520 + 6.24742i −0.222879 + 0.247532i
\(638\) −0.199413 + 0.0887845i −0.00789485 + 0.00351501i
\(639\) −10.7797 4.79945i −0.426440 0.189863i
\(640\) 31.9146 + 35.4447i 1.26153 + 1.40107i
\(641\) 1.83482 + 17.4571i 0.0724710 + 0.689516i 0.969089 + 0.246711i \(0.0793498\pi\)
−0.896618 + 0.442805i \(0.853983\pi\)
\(642\) −10.4692 2.22530i −0.413186 0.0878254i
\(643\) 0.678617 + 2.08857i 0.0267621 + 0.0823651i 0.963545 0.267545i \(-0.0862123\pi\)
−0.936783 + 0.349910i \(0.886212\pi\)
\(644\) −37.0826 + 7.88214i −1.46126 + 0.310600i
\(645\) −0.732145 1.26811i −0.0288282 0.0499318i
\(646\) 23.4341 40.5891i 0.922003 1.59696i
\(647\) 10.0259 30.8566i 0.394160 1.21310i −0.535454 0.844564i \(-0.679860\pi\)
0.929614 0.368535i \(-0.120140\pi\)
\(648\) 2.36027 22.4565i 0.0927202 0.882173i
\(649\) 5.64084 4.09831i 0.221422 0.160873i
\(650\) 5.43508 0.213181
\(651\) 0 0
\(652\) −56.7370 −2.22199
\(653\) −13.3407 + 9.69256i −0.522061 + 0.379299i −0.817380 0.576099i \(-0.804574\pi\)
0.295319 + 0.955399i \(0.404574\pi\)
\(654\) −7.21578 + 68.6535i −0.282159 + 2.68457i
\(655\) 6.19225 19.0578i 0.241951 0.744649i
\(656\) 1.49004 2.58083i 0.0581764 0.100764i
\(657\) 4.66457 + 8.07927i 0.181982 + 0.315202i
\(658\) 29.0569 6.17623i 1.13275 0.240774i
\(659\) −6.10043 18.7752i −0.237639 0.731377i −0.996760 0.0804282i \(-0.974371\pi\)
0.759122 0.650949i \(-0.225629\pi\)
\(660\) −15.1572 3.22176i −0.589993 0.125407i
\(661\) −1.23143 11.7163i −0.0478971 0.455710i −0.992017 0.126107i \(-0.959752\pi\)
0.944120 0.329603i \(-0.106915\pi\)
\(662\) −41.2095 45.7678i −1.60165 1.77881i
\(663\) 19.2868 + 8.58705i 0.749038 + 0.333493i
\(664\) −7.45686 + 3.32001i −0.289382 + 0.128841i
\(665\) 12.4207 13.7946i 0.481654 0.534931i
\(666\) 54.5336 + 39.6210i 2.11313 + 1.53528i
\(667\) −0.742554 0.539497i −0.0287518 0.0208894i
\(668\) 54.2195 60.2169i 2.09782 2.32986i
\(669\) −14.4367 + 6.42762i −0.558154 + 0.248506i
\(670\) −25.4208 11.3181i −0.982090 0.437255i
\(671\) −3.84897 4.27471i −0.148588 0.165023i
\(672\) 2.20582 + 20.9870i 0.0850913 + 0.809590i
\(673\) 49.2811 + 10.4750i 1.89965 + 0.403783i 0.999495 0.0317890i \(-0.0101204\pi\)
0.900154 + 0.435572i \(0.143454\pi\)
\(674\) −22.7764 70.0985i −0.877314 2.70009i
\(675\) −1.43813 + 0.305684i −0.0553537 + 0.0117658i
\(676\) 15.6348 + 27.0802i 0.601337 + 1.04155i
\(677\) −1.98998 + 3.44674i −0.0764810 + 0.132469i −0.901729 0.432301i \(-0.857702\pi\)
0.825248 + 0.564770i \(0.191035\pi\)
\(678\) 20.0433 61.6869i 0.769758 2.36907i
\(679\) −2.05784 + 19.5790i −0.0789726 + 0.751374i
\(680\) 27.0574 19.6584i 1.03760 0.753864i
\(681\) −33.1770 −1.27134
\(682\) 0 0
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) 43.2314 31.4095i 1.65300 1.20097i
\(685\) 4.30307 40.9410i 0.164412 1.56427i
\(686\) −13.0604 + 40.1958i −0.498648 + 1.53468i
\(687\) 19.4238 33.6430i 0.741064 1.28356i
\(688\) 0.0465749 + 0.0806701i 0.00177565 + 0.00307552i
\(689\) 10.6344 2.26041i 0.405138 0.0861148i
\(690\) −32.2468 99.2455i −1.22762 3.77821i
\(691\) −8.99459 1.91186i −0.342170 0.0727305i 0.0336216 0.999435i \(-0.489296\pi\)
−0.375792 + 0.926704i \(0.622629\pi\)
\(692\) −3.11854 29.6709i −0.118549 1.12792i
\(693\) −2.72516 3.02660i −0.103520 0.114971i
\(694\) −6.57982 2.92952i −0.249767 0.111203i
\(695\) 16.7528 7.45883i 0.635471 0.282930i
\(696\) 0.670582 0.744757i 0.0254184 0.0282299i
\(697\) 26.1251 + 18.9810i 0.989560 + 0.718957i
\(698\) 41.1196 + 29.8751i 1.55640 + 1.13079i
\(699\) 22.2226 24.6807i 0.840536 0.933510i
\(700\) 6.04416 2.69103i 0.228448 0.101711i
\(701\) −37.0482 16.4949i −1.39929 0.623005i −0.438110 0.898921i \(-0.644352\pi\)
−0.961182 + 0.275917i \(0.911019\pi\)
\(702\) 3.46464 + 3.84787i 0.130764 + 0.145229i
\(703\) −4.08666 38.8820i −0.154131 1.46646i
\(704\) −9.15931 1.94687i −0.345204 0.0733754i
\(705\) 15.7769 + 48.5564i 0.594193 + 1.82874i
\(706\) 11.1329 2.36637i 0.418993 0.0890596i
\(707\) −5.88235 10.1885i −0.221229 0.383179i
\(708\) −40.1710 + 69.5782i −1.50972 + 2.61491i
\(709\) 11.5220 35.4612i 0.432719 1.33177i −0.462687 0.886521i \(-0.653115\pi\)
0.895406 0.445250i \(-0.146885\pi\)
\(710\) −2.05198 + 19.5233i −0.0770094 + 0.732695i
\(711\) 12.6946 9.22314i 0.476083 0.345895i
\(712\) 6.73883 0.252548
\(713\) 0 0
\(714\) 41.1599 1.54037
\(715\) −2.81161 + 2.04276i −0.105148 + 0.0763948i
\(716\) −3.92372 + 37.3317i −0.146636 + 1.39515i
\(717\) 18.4196 56.6897i 0.687893 2.11712i
\(718\) 0.416347 0.721134i 0.0155379 0.0269125i
\(719\) −9.28994 16.0906i −0.346456 0.600080i 0.639161 0.769073i \(-0.279282\pi\)
−0.985617 + 0.168993i \(0.945948\pi\)
\(720\) 3.42265 0.727507i 0.127555 0.0271126i
\(721\) 2.76647 + 8.51433i 0.103029 + 0.317090i
\(722\) −5.66823 1.20482i −0.210950 0.0448387i
\(723\) 6.56815 + 62.4918i 0.244272 + 2.32409i
\(724\) 33.2385 + 36.9151i 1.23530 + 1.37194i
\(725\) 0.146332 + 0.0651514i 0.00543465 + 0.00241966i
\(726\) −56.0764 + 24.9668i −2.08119 + 0.926606i
\(727\) 10.9585 12.1706i 0.406427 0.451383i −0.504831 0.863218i \(-0.668445\pi\)
0.911258 + 0.411835i \(0.135112\pi\)
\(728\) −7.51065 5.45681i −0.278363 0.202243i
\(729\) 28.0140 + 20.3534i 1.03756 + 0.753829i
\(730\) 10.3851 11.5339i 0.384371 0.426888i
\(731\) −0.922113 + 0.410551i −0.0341056 + 0.0151848i
\(732\) 60.5507 + 26.9589i 2.23802 + 0.996431i
\(733\) −0.770396 0.855611i −0.0284552 0.0316027i 0.728749 0.684781i \(-0.240102\pi\)
−0.757204 + 0.653178i \(0.773435\pi\)
\(734\) −7.08819 67.4396i −0.261630 2.48924i
\(735\) −27.5531 5.85659i −1.01631 0.216024i
\(736\) −11.3966 35.0751i −0.420084 1.29289i
\(737\) 3.46367 0.736226i 0.127586 0.0271192i
\(738\) 29.4834 + 51.0668i 1.08530 + 1.87979i
\(739\) −10.3579 + 17.9404i −0.381022 + 0.659949i −0.991209 0.132309i \(-0.957761\pi\)
0.610187 + 0.792257i \(0.291094\pi\)
\(740\) 21.6374 66.5931i 0.795407 2.44801i
\(741\) 2.33722 22.2372i 0.0858600 0.816903i
\(742\) 17.1479 12.4586i 0.629517 0.457371i
\(743\) 35.2367 1.29271 0.646354 0.763038i \(-0.276293\pi\)
0.646354 + 0.763038i \(0.276293\pi\)
\(744\) 0 0
\(745\) 15.8950 0.582348
\(746\) −33.0959 + 24.0456i −1.21173 + 0.880370i
\(747\) 0.967301 9.20326i 0.0353917 0.336730i
\(748\) −3.30083 + 10.1589i −0.120690 + 0.371447i
\(749\) −1.46104 + 2.53060i −0.0533853 + 0.0924660i
\(750\) −27.5429 47.7058i −1.00573 1.74197i
\(751\) 42.2030 8.97053i 1.54001 0.327339i 0.641788 0.766882i \(-0.278193\pi\)
0.898222 + 0.439543i \(0.144859\pi\)
\(752\) −1.00364 3.08888i −0.0365989 0.112640i
\(753\) −57.6875 12.2619i −2.10225 0.446847i
\(754\) −0.0589655 0.561020i −0.00214740 0.0204311i
\(755\) −9.23623 10.2579i −0.336141 0.373322i
\(756\) 5.75808 + 2.56366i 0.209419 + 0.0932395i
\(757\) 24.9750 11.1196i 0.907733 0.404149i 0.100878 0.994899i \(-0.467835\pi\)
0.806855 + 0.590750i \(0.201168\pi\)
\(758\) −3.79898 + 4.21919i −0.137985 + 0.153248i
\(759\) 10.7433 + 7.80543i 0.389955 + 0.283319i
\(760\) −28.6563 20.8201i −1.03947 0.755223i
\(761\) −11.5037 + 12.7761i −0.417008 + 0.463134i −0.914649 0.404249i \(-0.867533\pi\)
0.497641 + 0.867383i \(0.334200\pi\)
\(762\) 6.89867 3.07149i 0.249913 0.111268i
\(763\) 17.2172 + 7.66559i 0.623304 + 0.277513i
\(764\) 5.02976 + 5.58612i 0.181970 + 0.202099i
\(765\) 3.96337 + 37.7089i 0.143296 + 1.36337i
\(766\) −43.1511 9.17204i −1.55911 0.331399i
\(767\) 5.56812 + 17.1369i 0.201053 + 0.618778i
\(768\) 46.0719 9.79289i 1.66248 0.353371i
\(769\) −7.02837 12.1735i −0.253450 0.438987i 0.711024 0.703168i \(-0.248232\pi\)
−0.964473 + 0.264181i \(0.914899\pi\)
\(770\) −3.38775 + 5.86776i −0.122086 + 0.211459i
\(771\) 12.0581 37.1111i 0.434263 1.33652i
\(772\) −8.91893 + 84.8580i −0.320999 + 3.05411i
\(773\) −17.9900 + 13.0705i −0.647054 + 0.470112i −0.862266 0.506455i \(-0.830956\pi\)
0.215212 + 0.976567i \(0.430956\pi\)
\(774\) −1.84315 −0.0662507
\(775\) 0 0
\(776\) 37.5668 1.34857
\(777\) 27.7771 20.1813i 0.996498 0.723998i
\(778\) 1.27139 12.0965i 0.0455816 0.433680i
\(779\) 10.5686 32.5268i 0.378659 1.16539i
\(780\) 20.0228 34.6804i 0.716930 1.24176i
\(781\) −1.24906 2.16343i −0.0446948 0.0774136i
\(782\) −70.3617 + 14.9558i −2.51613 + 0.534819i
\(783\) 0.0471557 + 0.145130i 0.00168521 + 0.00518654i
\(784\) 1.75277 + 0.372563i 0.0625990 + 0.0133058i
\(785\) 2.08784 + 19.8645i 0.0745181 + 0.708993i
\(786\) −31.4884 34.9714i −1.12315 1.24739i
\(787\) −29.2643 13.0293i −1.04316 0.464445i −0.187654 0.982235i \(-0.560088\pi\)
−0.855508 + 0.517790i \(0.826755\pi\)
\(788\) 18.8179 8.37827i 0.670360 0.298463i
\(789\) 11.5796 12.8605i 0.412245 0.457845i
\(790\) −21.1192 15.3440i −0.751388 0.545915i
\(791\) −14.3261 10.4085i −0.509377 0.370084i
\(792\) −5.20020 + 5.77541i −0.184781 + 0.205220i
\(793\) 13.5801 6.04625i 0.482244 0.214709i
\(794\) 35.6795 + 15.8855i 1.26622 + 0.563756i
\(795\) 24.3758 + 27.0720i 0.864519 + 0.960146i
\(796\) −1.58795 15.1083i −0.0562834 0.535501i
\(797\) 25.4800 + 5.41595i 0.902549 + 0.191843i 0.635737 0.771906i \(-0.280696\pi\)
0.266812 + 0.963749i \(0.414030\pi\)
\(798\) −13.4707 41.4586i −0.476859 1.46762i
\(799\) 34.4248 7.31722i 1.21786 0.258864i
\(800\) 3.21812 + 5.57395i 0.113778 + 0.197069i
\(801\) −3.81994 + 6.61633i −0.134971 + 0.233776i
\(802\) −27.1247 + 83.4814i −0.957808 + 2.94783i
\(803\) −0.206448 + 1.96422i −0.00728538 + 0.0693157i
\(804\) −33.0100 + 23.9832i −1.16417 + 0.845822i
\(805\) −28.4897 −1.00413
\(806\) 0 0
\(807\) −26.7486 −0.941594
\(808\) −18.1621 + 13.1956i −0.638942 + 0.464218i
\(809\) −0.912472 + 8.68159i −0.0320808 + 0.305229i 0.966702 + 0.255905i \(0.0823733\pi\)
−0.998783 + 0.0493239i \(0.984293\pi\)
\(810\) 13.1605 40.5037i 0.462411 1.42316i
\(811\) 25.0392 43.3692i 0.879245 1.52290i 0.0270750 0.999633i \(-0.491381\pi\)
0.852170 0.523264i \(-0.175286\pi\)
\(812\) −0.343347 0.594695i −0.0120491 0.0208697i
\(813\) −3.92260 + 0.833774i −0.137571 + 0.0292417i
\(814\) 4.40984 + 13.5721i 0.154565 + 0.475701i
\(815\) −41.7055 8.86477i −1.46088 0.310520i
\(816\) −0.470391 4.47547i −0.0164670 0.156673i
\(817\) 0.715318 + 0.794442i 0.0250258 + 0.0277940i
\(818\) −1.05124 0.468042i −0.0367558 0.0163647i
\(819\) 9.61505 4.28090i 0.335977 0.149587i
\(820\) 40.9859 45.5195i 1.43129 1.58961i
\(821\) −41.0844 29.8495i −1.43385 1.04176i −0.989283 0.146013i \(-0.953356\pi\)
−0.444572 0.895743i \(-0.646644\pi\)
\(822\) −78.2123 56.8246i −2.72797 1.98199i
\(823\) 4.23506 4.70351i 0.147625 0.163954i −0.664797 0.747024i \(-0.731482\pi\)
0.812422 + 0.583070i \(0.198149\pi\)
\(824\) 15.6064 6.94841i 0.543674 0.242059i
\(825\) −2.11713 0.942609i −0.0737092 0.0328174i
\(826\) 23.5061 + 26.1062i 0.817882 + 0.908350i
\(827\) 0.386489 + 3.67720i 0.0134395 + 0.127869i 0.999184 0.0403779i \(-0.0128562\pi\)
−0.985745 + 0.168247i \(0.946190\pi\)
\(828\) −80.2231 17.0519i −2.78795 0.592596i
\(829\) −8.04729 24.7670i −0.279494 0.860193i −0.987995 0.154484i \(-0.950628\pi\)
0.708501 0.705709i \(-0.249372\pi\)
\(830\) −15.0588 + 3.20086i −0.522700 + 0.111103i
\(831\) 15.3852 + 26.6479i 0.533707 + 0.924407i
\(832\) 12.0995 20.9570i 0.419475 0.726553i
\(833\) −6.00033 + 18.4671i −0.207899 + 0.639848i
\(834\) 4.50159 42.8298i 0.155877 1.48307i
\(835\) 49.2635 35.7920i 1.70483 1.23863i
\(836\) 11.3130 0.391267
\(837\) 0 0
\(838\) 31.1747 1.07691
\(839\) −6.06196 + 4.40427i −0.209282 + 0.152052i −0.687489 0.726195i \(-0.741287\pi\)
0.478207 + 0.878247i \(0.341287\pi\)
\(840\) 3.25157 30.9366i 0.112190 1.06742i
\(841\) −8.95636 + 27.5648i −0.308840 + 0.950511i
\(842\) 35.6687 61.7800i 1.22923 2.12908i
\(843\) 27.2996 + 47.2843i 0.940249 + 1.62856i
\(844\) 60.5423 12.8687i 2.08395 0.442957i
\(845\) 7.26150 + 22.3486i 0.249803 + 0.768815i
\(846\) 62.8606 + 13.3614i 2.16119 + 0.459375i
\(847\) 1.75173 + 16.6666i 0.0601903 + 0.572673i
\(848\) −1.55065 1.72217i −0.0532495 0.0591396i
\(849\) −1.60002 0.712377i −0.0549127 0.0244487i
\(850\) 11.4684 5.10605i 0.393362 0.175136i
\(851\) −40.1511 + 44.5923i −1.37636 + 1.52861i
\(852\) 23.2877 + 16.9195i 0.797822 + 0.579652i
\(853\) 35.2626 + 25.6198i 1.20737 + 0.877204i 0.994989 0.0999836i \(-0.0318790\pi\)
0.212378 + 0.977187i \(0.431879\pi\)
\(854\) 19.3922 21.5372i 0.663588 0.736989i
\(855\) 36.6855 16.3334i 1.25462 0.558592i
\(856\) 5.09390 + 2.26795i 0.174106 + 0.0775170i
\(857\) 26.2452 + 29.1482i 0.896518 + 0.995684i 0.999999 + 0.00105245i \(0.000335004\pi\)
−0.103482 + 0.994631i \(0.532998\pi\)
\(858\) 0.853112 + 8.11682i 0.0291248 + 0.277104i
\(859\) −17.8036 3.78426i −0.607449 0.129117i −0.106090 0.994357i \(-0.533833\pi\)
−0.501359 + 0.865239i \(0.667167\pi\)
\(860\) 0.591643 + 1.82089i 0.0201749 + 0.0620918i
\(861\) 29.3789 6.24467i 1.00123 0.212818i
\(862\) 13.9084 + 24.0900i 0.473721 + 0.820509i
\(863\) 22.4738 38.9258i 0.765018 1.32505i −0.175219 0.984530i \(-0.556063\pi\)
0.940237 0.340521i \(-0.110603\pi\)
\(864\) −1.89477 + 5.83151i −0.0644614 + 0.198392i
\(865\) 2.34355 22.2974i 0.0796830 0.758133i
\(866\) −60.4700 + 43.9340i −2.05486 + 1.49294i
\(867\) 5.53740 0.188060
\(868\) 0 0
\(869\) 3.32196 0.112690
\(870\) 1.52919 1.11102i 0.0518442 0.0376670i
\(871\) −0.956548 + 9.10095i −0.0324114 + 0.308374i
\(872\) 11.1133 34.2032i 0.376343 1.15827i
\(873\) −21.2949 + 36.8839i −0.720724 + 1.24833i
\(874\) 38.0922 + 65.9776i 1.28849 + 2.23173i
\(875\) −14.7105 + 3.12682i −0.497307 + 0.105706i
\(876\) −7.03257 21.6440i −0.237608 0.731283i
\(877\) 41.7190 + 8.86765i 1.40875 + 0.299439i 0.848637 0.528976i \(-0.177424\pi\)
0.560114 + 0.828415i \(0.310757\pi\)
\(878\) −2.98323 28.3835i −0.100679 0.957897i
\(879\) 15.3329 + 17.0290i 0.517167 + 0.574372i
\(880\) 0.676740 + 0.301304i 0.0228129 + 0.0101570i
\(881\) 8.14565 3.62668i 0.274434 0.122186i −0.264905 0.964274i \(-0.585341\pi\)
0.539339 + 0.842089i \(0.318674\pi\)
\(882\) −23.7253 + 26.3496i −0.798871 + 0.887236i
\(883\) 38.0791 + 27.6661i 1.28146 + 0.931038i 0.999596 0.0284158i \(-0.00904624\pi\)
0.281867 + 0.959453i \(0.409046\pi\)
\(884\) −22.3326 16.2256i −0.751126 0.545725i
\(885\) −40.3995 + 44.8682i −1.35801 + 1.50823i
\(886\) −9.95708 + 4.43318i −0.334515 + 0.148936i
\(887\) 2.88367 + 1.28389i 0.0968241 + 0.0431089i 0.454577 0.890707i \(-0.349790\pi\)
−0.357753 + 0.933816i \(0.616457\pi\)
\(888\) −43.8398 48.6890i −1.47117 1.63390i
\(889\) −0.215503 2.05038i −0.00722774 0.0687674i
\(890\) 12.4323 + 2.64256i 0.416731 + 0.0885789i
\(891\) 1.67473 + 5.15429i 0.0561056 + 0.172675i
\(892\) 20.2112 4.29602i 0.676721 0.143841i
\(893\) −18.6368 32.2799i −0.623657 1.08021i
\(894\) 18.6640 32.3270i 0.624217 1.08118i
\(895\) −8.71703 + 26.8283i −0.291378 + 0.896770i
\(896\) 3.19646 30.4123i 0.106786 1.01600i
\(897\) −27.7636 + 20.1714i −0.927000 + 0.673505i
\(898\) 36.8840 1.23083
\(899\) 0 0
\(900\) 14.3131 0.477105
\(901\) 20.3157 14.7602i 0.676815 0.491735i
\(902\) −1.30490 + 12.4153i −0.0434483 + 0.413383i
\(903\) −0.290113 + 0.892875i −0.00965434 + 0.0297130i
\(904\) −16.8954 + 29.2637i −0.561932 + 0.973295i
\(905\) 18.6648 + 32.3284i 0.620439 + 1.07463i
\(906\) −31.7075 + 6.73963i −1.05341 + 0.223909i
\(907\) 8.33208 + 25.6435i 0.276662 + 0.851478i 0.988775 + 0.149413i \(0.0477384\pi\)
−0.712113 + 0.702065i \(0.752262\pi\)
\(908\) 42.4318 + 9.01916i 1.40815 + 0.299311i
\(909\) −2.66039 25.3119i −0.0882395 0.839543i
\(910\) −11.7163 13.0123i −0.388393 0.431354i
\(911\) −4.63900 2.06542i −0.153697 0.0684303i 0.328446 0.944523i \(-0.393475\pi\)
−0.482143 + 0.876092i \(0.660142\pi\)
\(912\) −4.35401 + 1.93853i −0.144176 + 0.0641911i
\(913\) 1.31091 1.45591i 0.0433847 0.0481836i
\(914\) 8.50854 + 6.18181i 0.281437 + 0.204476i
\(915\) 40.2967 + 29.2773i 1.33217 + 0.967876i
\(916\) −33.9880 + 37.7475i −1.12299 + 1.24721i
\(917\) −11.7369 + 5.22560i −0.387586 + 0.172565i
\(918\) 10.9256 + 4.86437i 0.360597 + 0.160548i
\(919\) −32.9727 36.6199i −1.08767 1.20798i −0.976802 0.214145i \(-0.931304\pi\)
−0.110868 0.993835i \(-0.535363\pi\)
\(920\) 5.68265 + 54.0668i 0.187351 + 1.78253i
\(921\) 77.9293 + 16.5644i 2.56786 + 0.545815i
\(922\) 12.1157 + 37.2882i 0.399009 + 1.22802i
\(923\) 6.31475 1.34224i 0.207853 0.0441804i
\(924\) 4.96754 + 8.60403i 0.163420 + 0.283052i
\(925\) 5.23597 9.06896i 0.172158 0.298186i
\(926\) −19.5578 + 60.1929i −0.642711 + 1.97806i
\(927\) −2.02446 + 19.2614i −0.0664919 + 0.632628i
\(928\) 0.540441 0.392653i 0.0177408 0.0128895i
\(929\) 39.9606 1.31107 0.655533 0.755167i \(-0.272444\pi\)
0.655533 + 0.755167i \(0.272444\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) −35.1311 + 25.5243i −1.15076 + 0.836075i
\(933\) 4.70814 44.7949i 0.154137 1.46652i
\(934\) −16.3367 + 50.2791i −0.534552 + 1.64518i
\(935\) −4.01360 + 6.95176i −0.131259 + 0.227347i
\(936\) −10.0420 17.3932i −0.328232 0.568515i
\(937\) −44.1040 + 9.37459i −1.44081 + 0.306255i −0.861046 0.508527i \(-0.830190\pi\)
−0.579768 + 0.814781i \(0.696857\pi\)
\(938\) 5.51313 + 16.9677i 0.180010 + 0.554014i
\(939\) −53.8935 11.4554i −1.75875 0.373834i
\(940\) −6.97790 66.3903i −0.227594 2.16541i
\(941\) −33.5852 37.3002i −1.09485 1.21595i −0.974776 0.223185i \(-0.928354\pi\)
−0.120071 0.992765i \(-0.538312\pi\)
\(942\) 42.8515 + 19.0787i 1.39618 + 0.621618i
\(943\) −47.9533 + 21.3502i −1.56157 + 0.695257i
\(944\) 2.56999 2.85426i 0.0836460 0.0928983i
\(945\) 3.83202 + 2.78412i 0.124656 + 0.0905675i
\(946\) −0.315684 0.229358i −0.0102638 0.00745707i
\(947\) −20.2920 + 22.5366i −0.659402 + 0.732340i −0.976372 0.216095i \(-0.930668\pi\)
0.316970 + 0.948435i \(0.397334\pi\)
\(948\) −34.9688 + 15.5691i −1.13573 + 0.505661i
\(949\) −4.66278 2.07601i −0.151360 0.0673900i
\(950\) −8.89646 9.88052i −0.288639 0.320566i
\(951\) −0.270052 2.56937i −0.00875703 0.0833176i
\(952\) −20.9744 4.45825i −0.679785 0.144493i
\(953\) 10.9631 + 33.7411i 0.355131 + 1.09298i 0.955934 + 0.293583i \(0.0948477\pi\)
−0.600803 + 0.799397i \(0.705152\pi\)
\(954\) 44.8524 9.53368i 1.45215 0.308664i
\(955\) 2.82442 + 4.89204i 0.0913961 + 0.158303i
\(956\) −38.9689 + 67.4962i −1.26035 + 2.18298i
\(957\) −0.0743291 + 0.228761i −0.00240272 + 0.00739481i
\(958\) −2.18217 + 20.7620i −0.0705027 + 0.670788i
\(959\) −21.3530 + 15.5139i −0.689524 + 0.500969i
\(960\) 81.0843 2.61698
\(961\) 0 0
\(962\) −36.8791 −1.18903
\(963\) −5.11422 + 3.71570i −0.164804 + 0.119737i
\(964\) 8.58803 81.7097i 0.276602 2.63169i
\(965\) −19.8145 + 60.9828i −0.637852 + 1.96311i
\(966\) −33.4527 + 57.9418i −1.07632 + 1.86425i
\(967\) −17.7222 30.6957i −0.569906 0.987107i −0.996575 0.0826987i \(-0.973646\pi\)
0.426668 0.904408i \(-0.359687\pi\)
\(968\) 31.2800 6.64876i 1.00538 0.213699i
\(969\) −15.9593 49.1176i −0.512686 1.57789i
\(970\) 69.3060 + 14.7314i 2.22528 + 0.472998i
\(971\) 4.19130 + 39.8776i 0.134505 + 1.27973i 0.828597 + 0.559846i \(0.189140\pi\)
−0.694092 + 0.719887i \(0.744194\pi\)
\(972\) −49.6845 55.1802i −1.59363 1.76991i
\(973\) −10.7410 4.78221i −0.344341 0.153310i
\(974\) 49.7973 22.1712i 1.59561 0.710411i
\(975\) 4.00746 4.45073i 0.128341 0.142538i
\(976\) −2.56345 1.86246i −0.0820540 0.0596157i
\(977\) 31.2854 + 22.7302i 1.00091 + 0.727202i 0.962283 0.272052i \(-0.0877022\pi\)
0.0386252 + 0.999254i \(0.487702\pi\)
\(978\) −66.9998 + 74.4108i −2.14242 + 2.37939i
\(979\) −1.47758 + 0.657860i −0.0472236 + 0.0210253i
\(980\) 33.6470 + 14.9806i 1.07481 + 0.478538i
\(981\) 27.2818 + 30.2995i 0.871040 + 0.967388i
\(982\) 2.22555 + 21.1747i 0.0710202 + 0.675712i
\(983\) −21.1080 4.48665i −0.673242 0.143102i −0.141409 0.989951i \(-0.545163\pi\)
−0.531833 + 0.846849i \(0.678497\pi\)
\(984\) −17.7109 54.5086i −0.564604 1.73767i
\(985\) 15.1415 3.21842i 0.482447 0.102547i
\(986\) −0.651478 1.12839i −0.0207473 0.0359354i
\(987\) 16.3669 28.3483i 0.520965 0.902338i
\(988\) −9.03438 + 27.8049i −0.287422 + 0.884593i
\(989\) 0.171505 1.63176i 0.00545353 0.0518869i
\(990\) −11.8585 + 8.61568i −0.376887 + 0.273824i
\(991\) −46.8764 −1.48908 −0.744538 0.667580i \(-0.767330\pi\)
−0.744538 + 0.667580i \(0.767330\pi\)
\(992\) 0 0
\(993\) −67.8639 −2.15360
\(994\) 10.1825 7.39800i 0.322968 0.234650i
\(995\) 1.19333 11.3537i 0.0378310 0.359938i
\(996\) −6.97589 + 21.4696i −0.221039 + 0.680290i
\(997\) −22.2695 + 38.5718i −0.705281 + 1.22158i 0.261309 + 0.965255i \(0.415846\pi\)
−0.966590 + 0.256327i \(0.917488\pi\)
\(998\) 32.7830 + 56.7818i 1.03773 + 1.79740i
\(999\) 9.75827 2.07419i 0.308738 0.0656243i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.j.338.1 16
31.2 even 5 961.2.g.l.732.1 16
31.3 odd 30 961.2.d.p.531.4 16
31.4 even 5 961.2.g.n.448.2 16
31.5 even 3 961.2.g.l.235.1 16
31.6 odd 6 961.2.d.o.388.1 16
31.7 even 15 961.2.d.q.628.4 16
31.8 even 5 961.2.c.i.521.8 16
31.9 even 15 961.2.c.i.439.8 16
31.10 even 15 inner 961.2.g.j.816.1 16
31.11 odd 30 961.2.g.s.846.2 16
31.12 odd 30 961.2.d.o.374.1 16
31.13 odd 30 961.2.g.t.547.2 16
31.14 even 15 961.2.a.j.1.8 8
31.15 odd 10 961.2.g.s.844.2 16
31.16 even 5 961.2.g.m.844.2 16
31.17 odd 30 961.2.a.i.1.8 8
31.18 even 15 961.2.g.n.547.2 16
31.19 even 15 961.2.d.n.374.1 16
31.20 even 15 961.2.g.m.846.2 16
31.21 odd 30 961.2.g.k.816.1 16
31.22 odd 30 961.2.c.j.439.8 16
31.23 odd 10 961.2.c.j.521.8 16
31.24 odd 30 961.2.d.p.628.4 16
31.25 even 3 961.2.d.n.388.1 16
31.26 odd 6 31.2.g.a.18.1 16
31.27 odd 10 961.2.g.t.448.2 16
31.28 even 15 961.2.d.q.531.4 16
31.29 odd 10 31.2.g.a.19.1 yes 16
31.30 odd 2 961.2.g.k.338.1 16
93.14 odd 30 8649.2.a.be.1.1 8
93.17 even 30 8649.2.a.bf.1.1 8
93.26 even 6 279.2.y.c.235.2 16
93.29 even 10 279.2.y.c.19.2 16
124.91 even 10 496.2.bg.c.81.2 16
124.119 even 6 496.2.bg.c.49.2 16
155.29 odd 10 775.2.bl.a.701.2 16
155.57 even 12 775.2.ck.a.49.1 32
155.88 even 12 775.2.ck.a.49.4 32
155.119 odd 6 775.2.bl.a.576.2 16
155.122 even 20 775.2.ck.a.174.4 32
155.153 even 20 775.2.ck.a.174.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 31.26 odd 6
31.2.g.a.19.1 yes 16 31.29 odd 10
279.2.y.c.19.2 16 93.29 even 10
279.2.y.c.235.2 16 93.26 even 6
496.2.bg.c.49.2 16 124.119 even 6
496.2.bg.c.81.2 16 124.91 even 10
775.2.bl.a.576.2 16 155.119 odd 6
775.2.bl.a.701.2 16 155.29 odd 10
775.2.ck.a.49.1 32 155.57 even 12
775.2.ck.a.49.4 32 155.88 even 12
775.2.ck.a.174.1 32 155.153 even 20
775.2.ck.a.174.4 32 155.122 even 20
961.2.a.i.1.8 8 31.17 odd 30
961.2.a.j.1.8 8 31.14 even 15
961.2.c.i.439.8 16 31.9 even 15
961.2.c.i.521.8 16 31.8 even 5
961.2.c.j.439.8 16 31.22 odd 30
961.2.c.j.521.8 16 31.23 odd 10
961.2.d.n.374.1 16 31.19 even 15
961.2.d.n.388.1 16 31.25 even 3
961.2.d.o.374.1 16 31.12 odd 30
961.2.d.o.388.1 16 31.6 odd 6
961.2.d.p.531.4 16 31.3 odd 30
961.2.d.p.628.4 16 31.24 odd 30
961.2.d.q.531.4 16 31.28 even 15
961.2.d.q.628.4 16 31.7 even 15
961.2.g.j.338.1 16 1.1 even 1 trivial
961.2.g.j.816.1 16 31.10 even 15 inner
961.2.g.k.338.1 16 31.30 odd 2
961.2.g.k.816.1 16 31.21 odd 30
961.2.g.l.235.1 16 31.5 even 3
961.2.g.l.732.1 16 31.2 even 5
961.2.g.m.844.2 16 31.16 even 5
961.2.g.m.846.2 16 31.20 even 15
961.2.g.n.448.2 16 31.4 even 5
961.2.g.n.547.2 16 31.18 even 15
961.2.g.s.844.2 16 31.15 odd 10
961.2.g.s.846.2 16 31.11 odd 30
961.2.g.t.448.2 16 31.27 odd 10
961.2.g.t.547.2 16 31.13 odd 30
8649.2.a.be.1.1 8 93.14 odd 30
8649.2.a.bf.1.1 8 93.17 even 30