Properties

Label 31.2.g.a.18.1
Level 31
Weight 2
Character 31.18
Analytic conductor 0.248
Analytic rank 0
Dimension 16
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 31 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 31.g (of order \(15\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(0.247536246266\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 18.1
Root \(-1.42343i\)
Character \(\chi\) = 31.18
Dual form 31.2.g.a.19.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-1.86683 + 1.35633i) q^{2}\) \(+(-2.32289 + 1.03422i) q^{3}\) \(+(1.02738 - 3.16196i) q^{4}\) \(+(1.24923 + 2.16373i) q^{5}\) \(+(2.93370 - 5.08132i) q^{6}\) \(+(1.07187 + 1.19043i) q^{7}\) \(+(0.944583 + 2.90713i) q^{8}\) \(+(2.31884 - 2.57533i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-1.86683 + 1.35633i) q^{2}\) \(+(-2.32289 + 1.03422i) q^{3}\) \(+(1.02738 - 3.16196i) q^{4}\) \(+(1.24923 + 2.16373i) q^{5}\) \(+(2.93370 - 5.08132i) q^{6}\) \(+(1.07187 + 1.19043i) q^{7}\) \(+(0.944583 + 2.90713i) q^{8}\) \(+(2.31884 - 2.57533i) q^{9}\) \(+(-5.26683 - 2.34494i) q^{10}\) \(+(-0.717625 + 0.152536i) q^{11}\) \(+(0.883657 + 8.40743i) q^{12}\) \(+(0.198183 - 1.88559i) q^{13}\) \(+(-3.61560 - 0.768520i) q^{14}\) \(+(-5.13960 - 3.73414i) q^{15}\) \(+(-0.326952 - 0.237545i) q^{16}\) \(+(4.28354 + 0.910495i) q^{17}\) \(+(-0.835873 + 7.95280i) q^{18}\) \(+(0.484806 + 4.61262i) q^{19}\) \(+(8.12506 - 1.72703i) q^{20}\) \(+(-3.72099 - 1.65669i) q^{21}\) \(+(1.13279 - 1.25809i) q^{22}\) \(+(-2.19973 - 6.77006i) q^{23}\) \(+(-5.20077 - 5.77604i) q^{24}\) \(+(-0.621150 + 1.07586i) q^{25}\) \(+(2.18751 + 3.78887i) q^{26}\) \(+(-0.365721 + 1.12557i) q^{27}\) \(+(4.86530 - 2.16617i) q^{28}\) \(+(0.104314 - 0.0757884i) q^{29}\) \(+14.6595 q^{30}\) \(+(4.81795 - 2.79058i) q^{31}\) \(-5.18091 q^{32}\) \(+(1.50921 - 1.09651i) q^{33}\) \(+(-9.23157 + 4.11016i) q^{34}\) \(+(-1.23676 + 3.80635i) q^{35}\) \(+(-5.76075 - 9.97791i) q^{36}\) \(+(-4.21474 + 7.30014i) q^{37}\) \(+(-7.16128 - 7.95341i) q^{38}\) \(+(1.48975 + 4.58499i) q^{39}\) \(+(-5.11023 + 5.67549i) q^{40}\) \(+(-6.73647 - 2.99927i) q^{41}\) \(+(9.19348 - 1.95413i) q^{42}\) \(+(-0.0240929 - 0.229229i) q^{43}\) \(+(-0.254963 + 2.42581i) q^{44}\) \(+(8.46907 + 1.80016i) q^{45}\) \(+(13.2889 + 9.65498i) q^{46}\) \(+(6.50168 + 4.72375i) q^{47}\) \(+(1.00515 + 0.213651i) q^{48}\) \(+(0.463478 - 4.40970i) q^{49}\) \(+(-0.299645 - 2.85094i) q^{50}\) \(+(-10.8919 + 2.31514i) q^{51}\) \(+(-5.75854 - 2.56387i) q^{52}\) \(+(3.83695 - 4.26137i) q^{53}\) \(+(-0.843912 - 2.59729i) q^{54}\) \(+(-1.22652 - 1.36219i) q^{55}\) \(+(-2.44826 + 4.24051i) q^{56}\) \(+(-5.89661 - 10.2132i) q^{57}\) \(+(-0.0919419 + 0.282968i) q^{58}\) \(+(8.68208 - 3.86551i) q^{59}\) \(+(-17.0875 + 12.4148i) q^{60}\) \(-7.84044 q^{61}\) \(+(-5.20934 + 11.7443i) q^{62}\) \(+5.55122 q^{63}\) \(+(10.3258 - 7.50212i) q^{64}\) \(+(4.32748 - 1.92672i) q^{65}\) \(+(-1.33021 + 4.09397i) q^{66}\) \(+(-2.41329 - 4.17994i) q^{67}\) \(+(7.27978 - 12.6090i) q^{68}\) \(+(12.1115 + 13.4511i) q^{69}\) \(+(-2.85385 - 8.78324i) q^{70}\) \(+(-2.27840 + 2.53042i) q^{71}\) \(+(9.67714 + 4.30854i) q^{72}\) \(+(-2.63322 + 0.559708i) q^{73}\) \(+(-2.03321 - 19.3447i) q^{74}\) \(+(0.330187 - 3.14152i) q^{75}\) \(+(15.0830 + 3.20599i) q^{76}\) \(+(-0.950780 - 0.690782i) q^{77}\) \(+(-8.99987 - 6.53879i) q^{78}\) \(+(-4.42900 - 0.941413i) q^{79}\) \(+(0.105544 - 1.00418i) q^{80}\) \(+(0.772154 + 7.34656i) q^{81}\) \(+(16.6438 - 3.53775i) q^{82}\) \(+(2.43949 + 1.08613i) q^{83}\) \(+(-9.06128 + 10.0636i) q^{84}\) \(+(3.38106 + 10.4058i) q^{85}\) \(+(0.355888 + 0.395253i) q^{86}\) \(+(-0.163928 + 0.283932i) q^{87}\) \(+(-1.12130 - 1.94214i) q^{88}\) \(+(-0.681255 + 2.09669i) q^{89}\) \(+(-18.2519 + 8.12627i) q^{90}\) \(+(2.45708 - 1.78518i) q^{91}\) \(-23.6666 q^{92}\) \(+(-8.30552 + 11.4650i) q^{93}\) \(-18.5445 q^{94}\) \(+(-9.37482 + 6.81121i) q^{95}\) \(+(12.0347 - 5.35820i) q^{96}\) \(+(3.79778 - 11.6884i) q^{97}\) \(+(5.11577 + 8.86077i) q^{98}\) \(+(-1.27122 + 2.20182i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 6q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 3q^{5} \) \(\mathstrut +\mathstrut 11q^{6} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 17q^{8} \) \(\mathstrut -\mathstrut 10q^{9} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut +\mathstrut 5q^{12} \) \(\mathstrut -\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut -\mathstrut 2q^{16} \) \(\mathstrut -\mathstrut 6q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 37q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut +\mathstrut 9q^{22} \) \(\mathstrut +\mathstrut q^{23} \) \(\mathstrut -\mathstrut 20q^{24} \) \(\mathstrut -\mathstrut 13q^{25} \) \(\mathstrut +\mathstrut 9q^{26} \) \(\mathstrut +\mathstrut 9q^{27} \) \(\mathstrut -\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 22q^{30} \) \(\mathstrut +\mathstrut 15q^{31} \) \(\mathstrut -\mathstrut 42q^{32} \) \(\mathstrut -\mathstrut 13q^{33} \) \(\mathstrut -\mathstrut 32q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut q^{36} \) \(\mathstrut -\mathstrut 8q^{37} \) \(\mathstrut +\mathstrut 8q^{38} \) \(\mathstrut -\mathstrut 3q^{39} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut -\mathstrut 8q^{41} \) \(\mathstrut +\mathstrut 69q^{42} \) \(\mathstrut +\mathstrut 23q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 65q^{45} \) \(\mathstrut +\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 14q^{47} \) \(\mathstrut +\mathstrut 34q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut 3q^{50} \) \(\mathstrut -\mathstrut 42q^{51} \) \(\mathstrut +\mathstrut 29q^{52} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 46q^{54} \) \(\mathstrut -\mathstrut 7q^{55} \) \(\mathstrut -\mathstrut 30q^{56} \) \(\mathstrut -\mathstrut 17q^{57} \) \(\mathstrut -\mathstrut 15q^{58} \) \(\mathstrut +\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 75q^{60} \) \(\mathstrut -\mathstrut 60q^{61} \) \(\mathstrut -\mathstrut 25q^{62} \) \(\mathstrut -\mathstrut 46q^{63} \) \(\mathstrut +\mathstrut 23q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut -\mathstrut 30q^{66} \) \(\mathstrut +\mathstrut 13q^{67} \) \(\mathstrut +\mathstrut 30q^{68} \) \(\mathstrut +\mathstrut 38q^{69} \) \(\mathstrut +\mathstrut 12q^{70} \) \(\mathstrut -\mathstrut 14q^{71} \) \(\mathstrut +\mathstrut 37q^{72} \) \(\mathstrut +\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 13q^{74} \) \(\mathstrut +\mathstrut 13q^{75} \) \(\mathstrut -\mathstrut 12q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 15q^{78} \) \(\mathstrut +\mathstrut 18q^{79} \) \(\mathstrut +\mathstrut 36q^{80} \) \(\mathstrut +\mathstrut 23q^{81} \) \(\mathstrut +\mathstrut 14q^{82} \) \(\mathstrut -\mathstrut 16q^{83} \) \(\mathstrut +\mathstrut 8q^{84} \) \(\mathstrut +\mathstrut 37q^{85} \) \(\mathstrut -\mathstrut 26q^{86} \) \(\mathstrut +\mathstrut 15q^{87} \) \(\mathstrut -\mathstrut 17q^{88} \) \(\mathstrut +\mathstrut q^{89} \) \(\mathstrut -\mathstrut 23q^{90} \) \(\mathstrut +\mathstrut 8q^{91} \) \(\mathstrut -\mathstrut 64q^{92} \) \(\mathstrut +\mathstrut 17q^{93} \) \(\mathstrut +\mathstrut 44q^{94} \) \(\mathstrut -\mathstrut 22q^{95} \) \(\mathstrut +\mathstrut 8q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 10q^{98} \) \(\mathstrut +\mathstrut 6q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/31\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{13}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86683 + 1.35633i −1.32005 + 0.959070i −0.320115 + 0.947379i \(0.603722\pi\)
−0.999932 + 0.0116917i \(0.996278\pi\)
\(3\) −2.32289 + 1.03422i −1.34112 + 0.597107i −0.946787 0.321860i \(-0.895692\pi\)
−0.394336 + 0.918966i \(0.629025\pi\)
\(4\) 1.02738 3.16196i 0.513691 1.58098i
\(5\) 1.24923 + 2.16373i 0.558673 + 0.967649i 0.997608 + 0.0691304i \(0.0220225\pi\)
−0.438935 + 0.898519i \(0.644644\pi\)
\(6\) 2.93370 5.08132i 1.19768 2.07444i
\(7\) 1.07187 + 1.19043i 0.405127 + 0.449939i 0.910838 0.412764i \(-0.135436\pi\)
−0.505711 + 0.862703i \(0.668770\pi\)
\(8\) 0.944583 + 2.90713i 0.333960 + 1.02782i
\(9\) 2.31884 2.57533i 0.772945 0.858443i
\(10\) −5.26683 2.34494i −1.66552 0.741536i
\(11\) −0.717625 + 0.152536i −0.216372 + 0.0459913i −0.314822 0.949151i \(-0.601945\pi\)
0.0984501 + 0.995142i \(0.468612\pi\)
\(12\) 0.883657 + 8.40743i 0.255090 + 2.42702i
\(13\) 0.198183 1.88559i 0.0549662 0.522968i −0.932048 0.362335i \(-0.881980\pi\)
0.987014 0.160633i \(-0.0513537\pi\)
\(14\) −3.61560 0.768520i −0.966310 0.205396i
\(15\) −5.13960 3.73414i −1.32704 0.964150i
\(16\) −0.326952 0.237545i −0.0817381 0.0593862i
\(17\) 4.28354 + 0.910495i 1.03891 + 0.220828i 0.695626 0.718404i \(-0.255127\pi\)
0.343285 + 0.939231i \(0.388460\pi\)
\(18\) −0.835873 + 7.95280i −0.197017 + 1.87449i
\(19\) 0.484806 + 4.61262i 0.111222 + 1.05821i 0.897706 + 0.440596i \(0.145233\pi\)
−0.786483 + 0.617611i \(0.788100\pi\)
\(20\) 8.12506 1.72703i 1.81682 0.386177i
\(21\) −3.72099 1.65669i −0.811987 0.361520i
\(22\) 1.13279 1.25809i 0.241512 0.268227i
\(23\) −2.19973 6.77006i −0.458675 1.41166i −0.866766 0.498714i \(-0.833806\pi\)
0.408092 0.912941i \(-0.366194\pi\)
\(24\) −5.20077 5.77604i −1.06160 1.17903i
\(25\) −0.621150 + 1.07586i −0.124230 + 0.215173i
\(26\) 2.18751 + 3.78887i 0.429005 + 0.743059i
\(27\) −0.365721 + 1.12557i −0.0703831 + 0.216617i
\(28\) 4.86530 2.16617i 0.919455 0.409368i
\(29\) 0.104314 0.0757884i 0.0193706 0.0140736i −0.578058 0.815996i \(-0.696189\pi\)
0.597428 + 0.801922i \(0.296189\pi\)
\(30\) 14.6595 2.67644
\(31\) 4.81795 2.79058i 0.865330 0.501203i
\(32\) −5.18091 −0.915865
\(33\) 1.50921 1.09651i 0.262720 0.190877i
\(34\) −9.23157 + 4.11016i −1.58320 + 0.704887i
\(35\) −1.23676 + 3.80635i −0.209050 + 0.643390i
\(36\) −5.76075 9.97791i −0.960125 1.66298i
\(37\) −4.21474 + 7.30014i −0.692899 + 1.20014i 0.277985 + 0.960585i \(0.410333\pi\)
−0.970884 + 0.239550i \(0.923000\pi\)
\(38\) −7.16128 7.95341i −1.16171 1.29021i
\(39\) 1.48975 + 4.58499i 0.238551 + 0.734186i
\(40\) −5.11023 + 5.67549i −0.807999 + 0.897374i
\(41\) −6.73647 2.99927i −1.05206 0.468407i −0.193489 0.981102i \(-0.561980\pi\)
−0.858570 + 0.512696i \(0.828647\pi\)
\(42\) 9.19348 1.95413i 1.41858 0.301529i
\(43\) −0.0240929 0.229229i −0.00367414 0.0349571i 0.992531 0.121991i \(-0.0389279\pi\)
−0.996205 + 0.0870338i \(0.972261\pi\)
\(44\) −0.254963 + 2.42581i −0.0384371 + 0.365705i
\(45\) 8.46907 + 1.80016i 1.26249 + 0.268351i
\(46\) 13.2889 + 9.65498i 1.95935 + 1.42355i
\(47\) 6.50168 + 4.72375i 0.948368 + 0.689030i 0.950420 0.310968i \(-0.100653\pi\)
−0.00205222 + 0.999998i \(0.500653\pi\)
\(48\) 1.00515 + 0.213651i 0.145081 + 0.0308379i
\(49\) 0.463478 4.40970i 0.0662111 0.629957i
\(50\) −0.299645 2.85094i −0.0423763 0.403183i
\(51\) −10.8919 + 2.31514i −1.52517 + 0.324184i
\(52\) −5.75854 2.56387i −0.798566 0.355545i
\(53\) 3.83695 4.26137i 0.527046 0.585344i −0.419563 0.907726i \(-0.637817\pi\)
0.946610 + 0.322382i \(0.104483\pi\)
\(54\) −0.843912 2.59729i −0.114842 0.353447i
\(55\) −1.22652 1.36219i −0.165384 0.183678i
\(56\) −2.44826 + 4.24051i −0.327162 + 0.566662i
\(57\) −5.89661 10.2132i −0.781025 1.35278i
\(58\) −0.0919419 + 0.282968i −0.0120726 + 0.0371555i
\(59\) 8.68208 3.86551i 1.13031 0.503247i 0.245592 0.969373i \(-0.421018\pi\)
0.884718 + 0.466127i \(0.154351\pi\)
\(60\) −17.0875 + 12.4148i −2.20599 + 1.60274i
\(61\) −7.84044 −1.00387 −0.501933 0.864907i \(-0.667377\pi\)
−0.501933 + 0.864907i \(0.667377\pi\)
\(62\) −5.20934 + 11.7443i −0.661587 + 1.49152i
\(63\) 5.55122 0.699388
\(64\) 10.3258 7.50212i 1.29072 0.937765i
\(65\) 4.32748 1.92672i 0.536758 0.238980i
\(66\) −1.33021 + 4.09397i −0.163738 + 0.503933i
\(67\) −2.41329 4.17994i −0.294830 0.510661i 0.680115 0.733105i \(-0.261930\pi\)
−0.974945 + 0.222444i \(0.928596\pi\)
\(68\) 7.27978 12.6090i 0.882804 1.52906i
\(69\) 12.1115 + 13.4511i 1.45805 + 1.61933i
\(70\) −2.85385 8.78324i −0.341100 1.04980i
\(71\) −2.27840 + 2.53042i −0.270396 + 0.300306i −0.863016 0.505177i \(-0.831427\pi\)
0.592619 + 0.805483i \(0.298094\pi\)
\(72\) 9.67714 + 4.30854i 1.14046 + 0.507766i
\(73\) −2.63322 + 0.559708i −0.308195 + 0.0655088i −0.359413 0.933179i \(-0.617023\pi\)
0.0512180 + 0.998687i \(0.483690\pi\)
\(74\) −2.03321 19.3447i −0.236356 2.24877i
\(75\) 0.330187 3.14152i 0.0381267 0.362751i
\(76\) 15.0830 + 3.20599i 1.73014 + 0.367752i
\(77\) −0.950780 0.690782i −0.108351 0.0787219i
\(78\) −8.99987 6.53879i −1.01903 0.740372i
\(79\) −4.42900 0.941413i −0.498301 0.105917i −0.0480968 0.998843i \(-0.515316\pi\)
−0.450204 + 0.892925i \(0.648649\pi\)
\(80\) 0.105544 1.00418i 0.0118002 0.112271i
\(81\) 0.772154 + 7.34656i 0.0857949 + 0.816284i
\(82\) 16.6438 3.53775i 1.83800 0.390680i
\(83\) 2.43949 + 1.08613i 0.267768 + 0.119218i 0.536229 0.844072i \(-0.319848\pi\)
−0.268461 + 0.963291i \(0.586515\pi\)
\(84\) −9.06128 + 10.0636i −0.988666 + 1.09803i
\(85\) 3.38106 + 10.4058i 0.366728 + 1.12867i
\(86\) 0.355888 + 0.395253i 0.0383764 + 0.0426213i
\(87\) −0.163928 + 0.283932i −0.0175749 + 0.0304407i
\(88\) −1.12130 1.94214i −0.119531 0.207033i
\(89\) −0.681255 + 2.09669i −0.0722129 + 0.222248i −0.980649 0.195776i \(-0.937277\pi\)
0.908436 + 0.418025i \(0.137277\pi\)
\(90\) −18.2519 + 8.12627i −1.92392 + 0.856584i
\(91\) 2.45708 1.78518i 0.257572 0.187137i
\(92\) −23.6666 −2.46741
\(93\) −8.30552 + 11.4650i −0.861243 + 1.18887i
\(94\) −18.5445 −1.91272
\(95\) −9.37482 + 6.81121i −0.961837 + 0.698815i
\(96\) 12.0347 5.35820i 1.22829 0.546869i
\(97\) 3.79778 11.6884i 0.385606 1.18677i −0.550434 0.834879i \(-0.685538\pi\)
0.936040 0.351894i \(-0.114462\pi\)
\(98\) 5.11577 + 8.86077i 0.516771 + 0.895073i
\(99\) −1.27122 + 2.20182i −0.127763 + 0.221292i
\(100\) 2.76367 + 3.06937i 0.276367 + 0.306937i
\(101\) 2.26952 + 6.98486i 0.225826 + 0.695020i 0.998207 + 0.0598605i \(0.0190656\pi\)
−0.772381 + 0.635159i \(0.780934\pi\)
\(102\) 17.1932 19.0949i 1.70238 1.89068i
\(103\) 5.10558 + 2.27315i 0.503068 + 0.223980i 0.642549 0.766245i \(-0.277877\pi\)
−0.139481 + 0.990225i \(0.544544\pi\)
\(104\) 5.66885 1.20495i 0.555876 0.118155i
\(105\) −1.06374 10.1208i −0.103810 0.987690i
\(106\) −1.38311 + 13.1594i −0.134340 + 1.27816i
\(107\) −1.78430 0.379264i −0.172495 0.0366649i 0.120855 0.992670i \(-0.461437\pi\)
−0.293349 + 0.956005i \(0.594770\pi\)
\(108\) 3.18328 + 2.31279i 0.306312 + 0.222548i
\(109\) −9.51832 6.91546i −0.911689 0.662381i 0.0297521 0.999557i \(-0.490528\pi\)
−0.941442 + 0.337176i \(0.890528\pi\)
\(110\) 4.13729 + 0.879409i 0.394475 + 0.0838483i
\(111\) 2.24045 21.3164i 0.212654 2.02326i
\(112\) −0.0676692 0.643829i −0.00639414 0.0608361i
\(113\) −10.8130 + 2.29837i −1.01720 + 0.216212i −0.686195 0.727417i \(-0.740720\pi\)
−0.331003 + 0.943630i \(0.607387\pi\)
\(114\) 24.8605 + 11.0686i 2.32840 + 1.03667i
\(115\) 11.9006 13.2170i 1.10974 1.23249i
\(116\) −0.132470 0.407700i −0.0122995 0.0378540i
\(117\) −4.39646 4.88276i −0.406452 0.451411i
\(118\) −10.9650 + 18.9920i −1.00941 + 1.74836i
\(119\) 3.50750 + 6.07518i 0.321532 + 0.556911i
\(120\) 6.00083 18.4687i 0.547799 1.68595i
\(121\) −9.55728 + 4.25518i −0.868844 + 0.386834i
\(122\) 14.6368 10.6342i 1.32515 0.962777i
\(123\) 18.7500 1.69063
\(124\) −3.87381 18.1012i −0.347879 1.62553i
\(125\) 9.38846 0.839730
\(126\) −10.3632 + 7.52929i −0.923225 + 0.670762i
\(127\) −1.17576 + 0.523483i −0.104332 + 0.0464516i −0.458239 0.888829i \(-0.651520\pi\)
0.353907 + 0.935281i \(0.384853\pi\)
\(128\) −5.89913 + 18.1557i −0.521414 + 1.60475i
\(129\) 0.293038 + 0.507557i 0.0258006 + 0.0446879i
\(130\) −5.46540 + 9.46635i −0.479347 + 0.830254i
\(131\) −5.36666 5.96028i −0.468888 0.520752i 0.461594 0.887091i \(-0.347278\pi\)
−0.930481 + 0.366339i \(0.880611\pi\)
\(132\) −1.91657 5.89859i −0.166816 0.513406i
\(133\) −4.97134 + 5.52123i −0.431070 + 0.478752i
\(134\) 10.1746 + 4.53001i 0.878949 + 0.391334i
\(135\) −2.89231 + 0.614779i −0.248930 + 0.0529118i
\(136\) 1.39924 + 13.3128i 0.119983 + 1.14157i
\(137\) 1.72229 16.3865i 0.147145 1.39999i −0.632883 0.774248i \(-0.718128\pi\)
0.780028 0.625745i \(-0.215205\pi\)
\(138\) −40.8542 8.68382i −3.47774 0.739216i
\(139\) −5.93804 4.31424i −0.503658 0.365929i 0.306755 0.951789i \(-0.400757\pi\)
−0.810412 + 0.585860i \(0.800757\pi\)
\(140\) 10.7649 + 7.82114i 0.909799 + 0.661007i
\(141\) −19.9881 4.24861i −1.68330 0.357797i
\(142\) 0.821298 7.81413i 0.0689218 0.655747i
\(143\) 0.145399 + 1.38338i 0.0121588 + 0.115684i
\(144\) −1.36990 + 0.291182i −0.114159 + 0.0242652i
\(145\) 0.294298 + 0.131030i 0.0244401 + 0.0108814i
\(146\) 4.15662 4.61639i 0.344004 0.382055i
\(147\) 3.48398 + 10.7226i 0.287354 + 0.884385i
\(148\) 18.7526 + 20.8269i 1.54145 + 1.71196i
\(149\) 3.18096 5.50959i 0.260595 0.451363i −0.705805 0.708406i \(-0.749415\pi\)
0.966400 + 0.257043i \(0.0827480\pi\)
\(150\) 3.64454 + 6.31252i 0.297575 + 0.515415i
\(151\) −1.70724 + 5.25433i −0.138933 + 0.427592i −0.996181 0.0873120i \(-0.972172\pi\)
0.857248 + 0.514904i \(0.172172\pi\)
\(152\) −12.9515 + 5.76639i −1.05051 + 0.467716i
\(153\) 12.2777 8.92024i 0.992590 0.721159i
\(154\) 2.71187 0.218529
\(155\) 12.0568 + 6.93867i 0.968424 + 0.557327i
\(156\) 16.0281 1.28327
\(157\) −6.46767 + 4.69903i −0.516176 + 0.375024i −0.815161 0.579234i \(-0.803352\pi\)
0.298985 + 0.954258i \(0.403352\pi\)
\(158\) 9.54505 4.24973i 0.759363 0.338090i
\(159\) −4.50565 + 13.8670i −0.357321 + 1.09972i
\(160\) −6.47215 11.2101i −0.511669 0.886236i
\(161\) 5.70146 9.87521i 0.449338 0.778276i
\(162\) −11.4058 12.6675i −0.896127 0.995250i
\(163\) −5.27350 16.2302i −0.413052 1.27124i −0.913981 0.405756i \(-0.867008\pi\)
0.500929 0.865488i \(-0.332992\pi\)
\(164\) −16.4045 + 18.2190i −1.28098 + 1.42267i
\(165\) 4.25789 + 1.89574i 0.331476 + 0.147583i
\(166\) −6.02725 + 1.28113i −0.467805 + 0.0994351i
\(167\) 2.54759 + 24.2387i 0.197138 + 1.87565i 0.429570 + 0.903034i \(0.358665\pi\)
−0.232431 + 0.972613i \(0.574668\pi\)
\(168\) 1.30143 12.3823i 0.100408 0.955314i
\(169\) 9.19975 + 1.95547i 0.707673 + 0.150421i
\(170\) −20.4256 14.8401i −1.56657 1.13818i
\(171\) 13.0032 + 9.44737i 0.994379 + 0.722458i
\(172\) −0.749565 0.159325i −0.0571538 0.0121484i
\(173\) −0.937997 + 8.92444i −0.0713146 + 0.678513i 0.899211 + 0.437515i \(0.144141\pi\)
−0.970526 + 0.240998i \(0.922525\pi\)
\(174\) −0.0790797 0.752393i −0.00599501 0.0570387i
\(175\) −1.94653 + 0.413747i −0.147144 + 0.0312763i
\(176\) 0.270863 + 0.120596i 0.0204171 + 0.00909027i
\(177\) −16.1698 + 17.9583i −1.21539 + 1.34983i
\(178\) −1.57201 4.83816i −0.117827 0.362635i
\(179\) −7.55483 8.39049i −0.564675 0.627135i 0.391413 0.920215i \(-0.371986\pi\)
−0.956088 + 0.293080i \(0.905320\pi\)
\(180\) 14.3930 24.9294i 1.07279 1.85813i
\(181\) 7.47052 + 12.9393i 0.555279 + 0.961772i 0.997882 + 0.0650542i \(0.0207220\pi\)
−0.442602 + 0.896718i \(0.645945\pi\)
\(182\) −2.16567 + 6.66523i −0.160530 + 0.494060i
\(183\) 18.2125 8.10873i 1.34631 0.599415i
\(184\) 17.6036 12.7898i 1.29775 0.942874i
\(185\) −21.0607 −1.54841
\(186\) −0.0453903 32.6683i −0.00332818 2.39536i
\(187\) −3.21286 −0.234947
\(188\) 21.6160 15.7050i 1.57651 1.14540i
\(189\) −1.73192 + 0.771100i −0.125979 + 0.0560893i
\(190\) 8.26294 25.4307i 0.599457 1.84494i
\(191\) −1.13046 1.95802i −0.0817975 0.141677i 0.822225 0.569163i \(-0.192733\pi\)
−0.904022 + 0.427486i \(0.859399\pi\)
\(192\) −16.2269 + 28.1057i −1.17107 + 2.02836i
\(193\) 17.1727 + 19.0723i 1.23612 + 1.37285i 0.902813 + 0.430033i \(0.141498\pi\)
0.333307 + 0.942818i \(0.391835\pi\)
\(194\) 8.76347 + 26.9712i 0.629181 + 1.93642i
\(195\) −8.05963 + 8.95113i −0.577162 + 0.641004i
\(196\) −13.4671 5.99594i −0.961936 0.428282i
\(197\) 6.06032 1.28816i 0.431780 0.0917776i 0.0131056 0.999914i \(-0.495828\pi\)
0.418674 + 0.908136i \(0.362495\pi\)
\(198\) −0.613244 5.83463i −0.0435813 0.414649i
\(199\) 0.477625 4.54430i 0.0338579 0.322137i −0.964463 0.264217i \(-0.914887\pi\)
0.998321 0.0579199i \(-0.0184468\pi\)
\(200\) −3.71440 0.789519i −0.262647 0.0558274i
\(201\) 9.92879 + 7.21369i 0.700323 + 0.508814i
\(202\) −13.7106 9.96132i −0.964673 0.700876i
\(203\) 0.202031 + 0.0429430i 0.0141798 + 0.00301401i
\(204\) −3.86974 + 36.8182i −0.270936 + 2.57779i
\(205\) −1.92579 18.3227i −0.134503 1.27971i
\(206\) −12.6144 + 2.68127i −0.878886 + 0.186813i
\(207\) −22.5359 10.0336i −1.56636 0.697386i
\(208\) −0.512708 + 0.569420i −0.0355499 + 0.0394822i
\(209\) −1.05150 3.23618i −0.0727336 0.223851i
\(210\) 15.7130 + 17.4510i 1.08430 + 1.20424i
\(211\) 9.30839 16.1226i 0.640816 1.10993i −0.344435 0.938810i \(-0.611930\pi\)
0.985251 0.171115i \(-0.0547371\pi\)
\(212\) −9.53225 16.5103i −0.654678 1.13394i
\(213\) 2.67547 8.23426i 0.183321 0.564203i
\(214\) 3.84539 1.71208i 0.262865 0.117035i
\(215\) 0.465892 0.338490i 0.0317736 0.0230849i
\(216\) −3.61764 −0.246149
\(217\) 8.48618 + 2.74430i 0.576080 + 0.186295i
\(218\) 27.1487 1.83874
\(219\) 5.53783 4.02347i 0.374212 0.271881i
\(220\) −5.56731 + 2.47872i −0.375348 + 0.167116i
\(221\) 2.56575 7.89656i 0.172591 0.531180i
\(222\) 24.7296 + 42.8329i 1.65974 + 2.87475i
\(223\) −3.10748 + 5.38231i −0.208092 + 0.360426i −0.951113 0.308842i \(-0.900059\pi\)
0.743021 + 0.669268i \(0.233392\pi\)
\(224\) −5.55324 6.16750i −0.371042 0.412084i
\(225\) 1.33036 + 4.09441i 0.0886904 + 0.272961i
\(226\) 17.0686 18.9566i 1.13539 1.26097i
\(227\) −11.9198 5.30702i −0.791142 0.352239i −0.0289423 0.999581i \(-0.509214\pi\)
−0.762200 + 0.647342i \(0.775881\pi\)
\(228\) −38.3519 + 8.15194i −2.53992 + 0.539876i
\(229\) −1.59698 15.1942i −0.105531 1.00406i −0.911275 0.411799i \(-0.864901\pi\)
0.805743 0.592265i \(-0.201766\pi\)
\(230\) −4.28983 + 40.8150i −0.282863 + 2.69126i
\(231\) 2.92298 + 0.621299i 0.192318 + 0.0408785i
\(232\) 0.318860 + 0.231665i 0.0209342 + 0.0152096i
\(233\) −10.5668 7.67721i −0.692253 0.502951i 0.185147 0.982711i \(-0.440724\pi\)
−0.877400 + 0.479760i \(0.840724\pi\)
\(234\) 14.8301 + 3.15223i 0.969471 + 0.206068i
\(235\) −2.09882 + 19.9689i −0.136912 + 1.30263i
\(236\) −3.30277 31.4237i −0.214992 2.04551i
\(237\) 11.2617 2.39375i 0.731527 0.155491i
\(238\) −14.7879 6.58398i −0.958554 0.426776i
\(239\) −15.6859 + 17.4210i −1.01464 + 1.12687i −0.0227507 + 0.999741i \(0.507242\pi\)
−0.991886 + 0.127128i \(0.959424\pi\)
\(240\) 0.793379 + 2.44177i 0.0512124 + 0.157616i
\(241\) 16.5356 + 18.3647i 1.06515 + 1.18297i 0.982475 + 0.186395i \(0.0596805\pi\)
0.0826776 + 0.996576i \(0.473653\pi\)
\(242\) 12.0704 20.9065i 0.775914 1.34392i
\(243\) −11.1668 19.3415i −0.716353 1.24076i
\(244\) −8.05513 + 24.7911i −0.515677 + 1.58709i
\(245\) 10.1204 4.50588i 0.646567 0.287870i
\(246\) −35.0030 + 25.4312i −2.23171 + 1.62143i
\(247\) 8.79358 0.559522
\(248\) 12.6635 + 11.3705i 0.804134 + 0.722025i
\(249\) −6.78996 −0.430296
\(250\) −17.5266 + 12.7339i −1.10848 + 0.805360i
\(251\) −21.1889 + 9.43391i −1.33743 + 0.595463i −0.945827 0.324671i \(-0.894747\pi\)
−0.391605 + 0.920134i \(0.628080\pi\)
\(252\) 5.70323 17.5527i 0.359270 1.10572i
\(253\) 2.61125 + 4.52282i 0.164168 + 0.284348i
\(254\) 1.48493 2.57198i 0.0931729 0.161380i
\(255\) −18.6158 20.6749i −1.16577 1.29471i
\(256\) −5.72420 17.6173i −0.357763 1.10108i
\(257\) 10.2686 11.4044i 0.640535 0.711386i −0.332225 0.943200i \(-0.607799\pi\)
0.972760 + 0.231814i \(0.0744661\pi\)
\(258\) −1.23547 0.550066i −0.0769169 0.0342456i
\(259\) −13.2079 + 2.80743i −0.820700 + 0.174445i
\(260\) −1.64623 15.6628i −0.102095 0.971365i
\(261\) 0.0467066 0.444383i 0.00289106 0.0275066i
\(262\) 18.1028 + 3.84786i 1.11839 + 0.237722i
\(263\) 5.50607 + 4.00039i 0.339519 + 0.246675i 0.744459 0.667668i \(-0.232708\pi\)
−0.404940 + 0.914343i \(0.632708\pi\)
\(264\) 4.61325 + 3.35173i 0.283926 + 0.206284i
\(265\) 14.0137 + 2.97870i 0.860854 + 0.182980i
\(266\) 1.79202 17.0500i 0.109876 1.04540i
\(267\) −0.585951 5.57495i −0.0358596 0.341181i
\(268\) −15.6962 + 3.33632i −0.958796 + 0.203798i
\(269\) 9.61017 + 4.27873i 0.585943 + 0.260878i 0.678225 0.734854i \(-0.262750\pi\)
−0.0922822 + 0.995733i \(0.529416\pi\)
\(270\) 4.56560 5.07061i 0.277854 0.308588i
\(271\) −0.487363 1.49995i −0.0296052 0.0911154i 0.935162 0.354220i \(-0.115254\pi\)
−0.964767 + 0.263105i \(0.915254\pi\)
\(272\) −1.18423 1.31522i −0.0718046 0.0797470i
\(273\) −3.86128 + 6.68794i −0.233695 + 0.404772i
\(274\) 19.0103 + 32.9268i 1.14845 + 1.98918i
\(275\) 0.281645 0.866813i 0.0169838 0.0522708i
\(276\) 54.9750 24.4765i 3.30911 1.47331i
\(277\) −9.79020 + 7.11300i −0.588236 + 0.427379i −0.841684 0.539970i \(-0.818435\pi\)
0.253448 + 0.967349i \(0.418435\pi\)
\(278\) 16.9368 1.01580
\(279\) 3.98538 18.8787i 0.238599 1.13024i
\(280\) −12.2337 −0.731106
\(281\) 17.3718 12.6214i 1.03632 0.752927i 0.0667525 0.997770i \(-0.478736\pi\)
0.969563 + 0.244842i \(0.0787362\pi\)
\(282\) 43.0769 19.1791i 2.56519 1.14210i
\(283\) −0.212853 + 0.655094i −0.0126528 + 0.0389413i −0.957184 0.289482i \(-0.906517\pi\)
0.944531 + 0.328423i \(0.106517\pi\)
\(284\) 5.66030 + 9.80392i 0.335877 + 0.581756i
\(285\) 14.7324 25.5173i 0.872675 1.51152i
\(286\) −2.14775 2.38532i −0.126999 0.141047i
\(287\) −3.65018 11.2341i −0.215463 0.663127i
\(288\) −12.0137 + 13.3426i −0.707913 + 0.786217i
\(289\) 1.98947 + 0.885767i 0.117027 + 0.0521040i
\(290\) −0.727123 + 0.154555i −0.0426981 + 0.00907576i
\(291\) 3.26649 + 31.0785i 0.191485 + 1.82186i
\(292\) −0.935550 + 8.90116i −0.0547489 + 0.520901i
\(293\) −8.81495 1.87368i −0.514975 0.109461i −0.0569086 0.998379i \(-0.518124\pi\)
−0.458066 + 0.888918i \(0.651458\pi\)
\(294\) −21.0474 15.2918i −1.22751 0.891837i
\(295\) 19.2098 + 13.9568i 1.11844 + 0.812594i
\(296\) −25.2036 5.35719i −1.46493 0.311380i
\(297\) 0.0907602 0.863526i 0.00526644 0.0501068i
\(298\) 1.53451 + 14.5999i 0.0888918 + 0.845749i
\(299\) −13.2015 + 2.80607i −0.763463 + 0.162279i
\(300\) −9.59413 4.27158i −0.553917 0.246620i
\(301\) 0.247056 0.274384i 0.0142401 0.0158152i
\(302\) −3.93949 12.1245i −0.226692 0.697688i
\(303\) −12.4957 13.8779i −0.717861 0.797265i
\(304\) 0.937195 1.62327i 0.0537518 0.0931009i
\(305\) −9.79451 16.9646i −0.560832 0.971389i
\(306\) −10.8215 + 33.3051i −0.618623 + 1.90393i
\(307\) −28.6238 + 12.7441i −1.63365 + 0.727346i −0.998968 0.0454296i \(-0.985534\pi\)
−0.634679 + 0.772776i \(0.718868\pi\)
\(308\) −3.16104 + 2.29663i −0.180117 + 0.130863i
\(309\) −14.2107 −0.808416
\(310\) −31.9191 + 3.39968i −1.81288 + 0.193089i
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) −11.9219 + 8.66180i −0.674947 + 0.490378i
\(313\) −19.7953 + 8.81346i −1.11890 + 0.498166i −0.880996 0.473123i \(-0.843127\pi\)
−0.237903 + 0.971289i \(0.576460\pi\)
\(314\) 5.70058 17.5446i 0.321702 0.990098i
\(315\) 6.93475 + 12.0113i 0.390729 + 0.676762i
\(316\) −7.52698 + 13.0371i −0.423426 + 0.733395i
\(317\) 0.679868 + 0.755070i 0.0381852 + 0.0424089i 0.761935 0.647654i \(-0.224250\pi\)
−0.723750 + 0.690063i \(0.757583\pi\)
\(318\) −10.3969 31.9984i −0.583030 1.79438i
\(319\) −0.0632977 + 0.0702992i −0.00354399 + 0.00393600i
\(320\) 29.1318 + 12.9703i 1.62852 + 0.725063i
\(321\) 4.53698 0.964364i 0.253229 0.0538256i
\(322\) 2.75041 + 26.1684i 0.153274 + 1.45831i
\(323\) −2.12308 + 20.1998i −0.118131 + 1.12394i
\(324\) 24.0228 + 5.10620i 1.33460 + 0.283678i
\(325\) 1.90553 + 1.38445i 0.105700 + 0.0767955i
\(326\) 31.8582 + 23.1463i 1.76446 + 1.28196i
\(327\) 29.2621 + 6.21986i 1.61820 + 0.343959i
\(328\) 2.35610 22.4168i 0.130094 1.23776i
\(329\) 1.34565 + 12.8030i 0.0741881 + 0.705853i
\(330\) −10.5200 + 2.23609i −0.579107 + 0.123093i
\(331\) 24.3820 + 10.8556i 1.34016 + 0.596676i 0.946537 0.322597i \(-0.104556\pi\)
0.393621 + 0.919273i \(0.371222\pi\)
\(332\) 5.94058 6.59768i 0.326032 0.362095i
\(333\) 9.02697 + 27.7822i 0.494675 + 1.52245i
\(334\) −37.6316 41.7941i −2.05911 2.28687i
\(335\) 6.02951 10.4434i 0.329427 0.570584i
\(336\) 0.823049 + 1.42556i 0.0449010 + 0.0777708i
\(337\) 9.87048 30.3782i 0.537679 1.65481i −0.200108 0.979774i \(-0.564129\pi\)
0.737788 0.675033i \(-0.235871\pi\)
\(338\) −19.8266 + 8.82738i −1.07843 + 0.480146i
\(339\) 22.7404 16.5218i 1.23509 0.897343i
\(340\) 36.3765 1.97279
\(341\) −3.03182 + 2.73750i −0.164182 + 0.148244i
\(342\) −37.0885 −2.00552
\(343\) 14.8178 10.7658i 0.800088 0.581298i
\(344\) 0.643640 0.286567i 0.0347027 0.0154507i
\(345\) −13.9746 + 43.0095i −0.752368 + 2.31555i
\(346\) −10.3534 17.9326i −0.556603 0.964065i
\(347\) −1.56066 + 2.70314i −0.0837804 + 0.145112i −0.904871 0.425686i \(-0.860033\pi\)
0.821090 + 0.570798i \(0.193366\pi\)
\(348\) 0.729364 + 0.810041i 0.0390980 + 0.0434227i
\(349\) −6.80655 20.9484i −0.364346 1.12134i −0.950389 0.311063i \(-0.899315\pi\)
0.586043 0.810280i \(-0.300685\pi\)
\(350\) 3.07265 3.41253i 0.164240 0.182407i
\(351\) 2.04989 + 0.912671i 0.109415 + 0.0487147i
\(352\) 3.71795 0.790275i 0.198167 0.0421218i
\(353\) −0.515575 4.90537i −0.0274413 0.261087i −0.999638 0.0269192i \(-0.991430\pi\)
0.972196 0.234167i \(-0.0752364\pi\)
\(354\) 5.82873 55.4567i 0.309794 2.94749i
\(355\) −8.32139 1.76877i −0.441654 0.0938764i
\(356\) 5.92973 + 4.30820i 0.314275 + 0.228334i
\(357\) −14.4306 10.4845i −0.763750 0.554897i
\(358\) 25.4838 + 5.41676i 1.34686 + 0.286285i
\(359\) 0.0377201 0.358883i 0.00199079 0.0189411i −0.993481 0.113994i \(-0.963635\pi\)
0.995472 + 0.0950532i \(0.0303021\pi\)
\(360\) 2.76645 + 26.3211i 0.145805 + 1.38724i
\(361\) −2.45641 + 0.522126i −0.129285 + 0.0274803i
\(362\) −31.4962 14.0230i −1.65540 0.737033i
\(363\) 17.7998 19.7686i 0.934246 1.03758i
\(364\) −3.12029 9.60325i −0.163547 0.503347i
\(365\) −4.50055 4.99837i −0.235570 0.261627i
\(366\) −23.0015 + 39.8398i −1.20231 + 2.08246i
\(367\) 14.6935 + 25.4498i 0.766992 + 1.32847i 0.939187 + 0.343406i \(0.111581\pi\)
−0.172195 + 0.985063i \(0.555086\pi\)
\(368\) −0.888987 + 2.73602i −0.0463416 + 0.142625i
\(369\) −23.3449 + 10.3938i −1.21528 + 0.541080i
\(370\) 39.3167 28.5653i 2.04398 1.48504i
\(371\) 9.18555 0.476890
\(372\) 27.7190 + 38.0407i 1.43716 + 1.97232i
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) 5.99786 4.35770i 0.310142 0.225331i
\(375\) −21.8084 + 9.70973i −1.12618 + 0.501408i
\(376\) −7.59116 + 23.3632i −0.391484 + 1.20486i
\(377\) −0.122233 0.211713i −0.00629530 0.0109038i
\(378\) 2.18733 3.78857i 0.112504 0.194863i
\(379\) −1.64634 1.82845i −0.0845669 0.0939211i 0.699376 0.714754i \(-0.253461\pi\)
−0.783943 + 0.620833i \(0.786795\pi\)
\(380\) 11.9052 + 36.6405i 0.610725 + 1.87962i
\(381\) 2.18978 2.43199i 0.112186 0.124595i
\(382\) 4.76611 + 2.12201i 0.243855 + 0.108571i
\(383\) 18.7001 3.97484i 0.955533 0.203105i 0.296343 0.955082i \(-0.404233\pi\)
0.659190 + 0.751977i \(0.270899\pi\)
\(384\) −5.07387 48.2747i −0.258925 2.46351i
\(385\) 0.306923 2.92018i 0.0156422 0.148826i
\(386\) −57.9268 12.3127i −2.94840 0.626701i
\(387\) −0.646208 0.469497i −0.0328486 0.0238659i
\(388\) −33.0563 24.0168i −1.67818 1.21927i
\(389\) −5.15587 1.09591i −0.261413 0.0555651i 0.0753405 0.997158i \(-0.475996\pi\)
−0.336754 + 0.941593i \(0.609329\pi\)
\(390\) 2.90526 27.6417i 0.147114 1.39969i
\(391\) −3.25851 31.0027i −0.164790 1.56787i
\(392\) 13.2573 2.81793i 0.669597 0.142327i
\(393\) 18.6304 + 8.29480i 0.939781 + 0.418417i
\(394\) −9.56640 + 10.6246i −0.481949 + 0.535258i
\(395\) −3.49587 10.7592i −0.175897 0.541354i
\(396\) 5.65604 + 6.28167i 0.284227 + 0.315666i
\(397\) −8.46275 + 14.6579i −0.424733 + 0.735660i −0.996395 0.0848295i \(-0.972965\pi\)
0.571662 + 0.820489i \(0.306299\pi\)
\(398\) 5.27193 + 9.13124i 0.264258 + 0.457708i
\(399\) 5.83773 17.9667i 0.292252 0.899460i
\(400\) 0.458652 0.204205i 0.0229326 0.0102103i
\(401\) −30.7747 + 22.3591i −1.53682 + 1.11656i −0.584524 + 0.811377i \(0.698719\pi\)
−0.952293 + 0.305186i \(0.901281\pi\)
\(402\) −28.3195 −1.41245
\(403\) −4.30705 9.63773i −0.214549 0.480089i
\(404\) 24.4175 1.21482
\(405\) −14.9314 + 10.8483i −0.741945 + 0.539055i
\(406\) −0.435402 + 0.193854i −0.0216087 + 0.00962079i
\(407\) 1.91107 5.88166i 0.0947281 0.291543i
\(408\) −17.0187 29.4772i −0.842550 1.45934i
\(409\) −0.249342 + 0.431873i −0.0123292 + 0.0213547i −0.872124 0.489285i \(-0.837258\pi\)
0.859795 + 0.510639i \(0.170591\pi\)
\(410\) 28.4467 + 31.5933i 1.40488 + 1.56028i
\(411\) 12.9465 + 39.8453i 0.638605 + 1.96542i
\(412\) 12.4330 13.8082i 0.612529 0.680283i
\(413\) 13.9076 + 6.19208i 0.684350 + 0.304692i
\(414\) 55.6796 11.8351i 2.73650 0.581662i
\(415\) 0.697389 + 6.63521i 0.0342335 + 0.325710i
\(416\) −1.02677 + 9.76908i −0.0503416 + 0.478968i
\(417\) 18.2553 + 3.88028i 0.893966 + 0.190018i
\(418\) 6.35229 + 4.61521i 0.310701 + 0.225737i
\(419\) −10.9298 7.94098i −0.533957 0.387942i 0.287879 0.957667i \(-0.407050\pi\)
−0.821836 + 0.569725i \(0.807050\pi\)
\(420\) −33.0945 7.03444i −1.61484 0.343246i
\(421\) 3.23151 30.7458i 0.157494 1.49846i −0.575264 0.817968i \(-0.695101\pi\)
0.732758 0.680489i \(-0.238233\pi\)
\(422\) 4.49041 + 42.7234i 0.218590 + 2.07974i
\(423\) 27.2415 5.79037i 1.32453 0.281537i
\(424\) 16.0127 + 7.12930i 0.777644 + 0.346229i
\(425\) −3.64029 + 4.04295i −0.176580 + 0.196112i
\(426\) 6.17373 + 19.0008i 0.299118 + 0.920591i
\(427\) −8.40390 9.33347i −0.406693 0.451678i
\(428\) −3.03237 + 5.25223i −0.146575 + 0.253876i
\(429\) −1.76846 3.06306i −0.0853820 0.147886i
\(430\) −0.410636 + 1.26381i −0.0198026 + 0.0609462i
\(431\) −11.0126 + 4.90313i −0.530458 + 0.236175i −0.654446 0.756108i \(-0.727098\pi\)
0.123988 + 0.992284i \(0.460432\pi\)
\(432\) 0.386948 0.281134i 0.0186170 0.0135261i
\(433\) −32.3919 −1.55665 −0.778327 0.627860i \(-0.783931\pi\)
−0.778327 + 0.627860i \(0.783931\pi\)
\(434\) −19.5644 + 6.38693i −0.939122 + 0.306583i
\(435\) −0.819136 −0.0392745
\(436\) −31.6454 + 22.9917i −1.51554 + 1.10110i
\(437\) 30.1613 13.4287i 1.44281 0.642380i
\(438\) −4.88102 + 15.0222i −0.233224 + 0.717790i
\(439\) −6.18408 10.7111i −0.295150 0.511215i 0.679870 0.733333i \(-0.262036\pi\)
−0.975020 + 0.222118i \(0.928703\pi\)
\(440\) 2.80151 4.85236i 0.133557 0.231327i
\(441\) −10.2817 11.4190i −0.489604 0.543760i
\(442\) 5.92053 + 18.2215i 0.281611 + 0.866709i
\(443\) −3.16058 + 3.51017i −0.150163 + 0.166773i −0.813533 0.581518i \(-0.802459\pi\)
0.663370 + 0.748292i \(0.269126\pi\)
\(444\) −65.0998 28.9843i −3.08950 1.37553i
\(445\) −5.38771 + 1.14519i −0.255402 + 0.0542873i
\(446\) −1.49906 14.2626i −0.0709826 0.675354i
\(447\) −1.69092 + 16.0880i −0.0799777 + 0.760937i
\(448\) 19.9986 + 4.25083i 0.944844 + 0.200833i
\(449\) 12.9315 + 9.39528i 0.610275 + 0.443390i 0.849511 0.527571i \(-0.176897\pi\)
−0.239236 + 0.970961i \(0.576897\pi\)
\(450\) −8.03692 5.83917i −0.378864 0.275261i
\(451\) 5.29175 + 1.12480i 0.249179 + 0.0529646i
\(452\) −3.84171 + 36.5515i −0.180699 + 1.71924i
\(453\) −1.46840 13.9709i −0.0689916 0.656411i
\(454\) 29.4502 6.25984i 1.38217 0.293789i
\(455\) 6.93210 + 3.08637i 0.324982 + 0.144691i
\(456\) 24.1213 26.7894i 1.12958 1.25453i
\(457\) 1.40842 + 4.33468i 0.0658832 + 0.202768i 0.978579 0.205872i \(-0.0660032\pi\)
−0.912696 + 0.408640i \(0.866003\pi\)
\(458\) 23.5897 + 26.1990i 1.10227 + 1.22420i
\(459\) −2.59141 + 4.48846i −0.120957 + 0.209503i
\(460\) −29.5650 51.2081i −1.37848 2.38759i
\(461\) −5.25050 + 16.1594i −0.244540 + 0.752618i 0.751171 + 0.660107i \(0.229489\pi\)
−0.995712 + 0.0925105i \(0.970511\pi\)
\(462\) −6.29939 + 2.80467i −0.293074 + 0.130485i
\(463\) −22.1896 + 16.1217i −1.03124 + 0.749239i −0.968556 0.248795i \(-0.919965\pi\)
−0.0626822 + 0.998034i \(0.519965\pi\)
\(464\) −0.0521088 −0.00241909
\(465\) −35.1827 3.64844i −1.63156 0.169192i
\(466\) 30.1392 1.39617
\(467\) 18.5350 13.4665i 0.857697 0.623153i −0.0695608 0.997578i \(-0.522160\pi\)
0.927257 + 0.374425i \(0.122160\pi\)
\(468\) −19.9559 + 8.88495i −0.922463 + 0.410707i
\(469\) 2.38919 7.35318i 0.110323 0.339538i
\(470\) −23.1663 40.1253i −1.06858 1.85084i
\(471\) 10.1639 17.6043i 0.468327 0.811165i
\(472\) 19.4385 + 21.5886i 0.894728 + 0.993696i
\(473\) 0.0522553 + 0.160825i 0.00240270 + 0.00739476i
\(474\) −17.7770 + 19.7433i −0.816524 + 0.906841i
\(475\) −5.26368 2.34354i −0.241514 0.107529i
\(476\) 22.8130 4.84905i 1.04563 0.222256i
\(477\) −2.07716 19.7628i −0.0951065 0.904878i
\(478\) 5.65432 53.7972i 0.258622 2.46063i
\(479\) −8.84935 1.88099i −0.404337 0.0859445i 0.00125373 0.999999i \(-0.499601\pi\)
−0.405591 + 0.914055i \(0.632934\pi\)
\(480\) 26.6278 + 19.3462i 1.21539 + 0.883031i
\(481\) 12.9298 + 9.39403i 0.589547 + 0.428331i
\(482\) −55.7777 11.8559i −2.54060 0.540022i
\(483\) −3.03075 + 28.8356i −0.137904 + 1.31207i
\(484\) 3.63570 + 34.5914i 0.165259 + 1.57234i
\(485\) 30.0347 6.38408i 1.36381 0.289886i
\(486\) 47.0800 + 20.9614i 2.13559 + 0.950828i
\(487\) −15.8066 + 17.5551i −0.716268 + 0.795496i −0.985876 0.167474i \(-0.946439\pi\)
0.269609 + 0.962970i \(0.413106\pi\)
\(488\) −7.40594 22.7931i −0.335251 1.03180i
\(489\) 29.0353 + 32.2470i 1.31302 + 1.45826i
\(490\) −12.7815 + 22.1383i −0.577411 + 1.00011i
\(491\) −4.61346 7.99074i −0.208202 0.360617i 0.742946 0.669351i \(-0.233428\pi\)
−0.951148 + 0.308734i \(0.900095\pi\)
\(492\) 19.2634 59.2867i 0.868462 2.67285i
\(493\) 0.515838 0.229666i 0.0232322 0.0103436i
\(494\) −16.4161 + 11.9270i −0.738596 + 0.536621i
\(495\) −6.35220 −0.285510
\(496\) −2.23813 0.232093i −0.100495 0.0104213i
\(497\) −5.45442 −0.244664
\(498\) 12.6757 9.20943i 0.568011 0.412684i
\(499\) 25.9574 11.5570i 1.16201 0.517362i 0.267130 0.963660i \(-0.413925\pi\)
0.894884 + 0.446298i \(0.147258\pi\)
\(500\) 9.64554 29.6859i 0.431362 1.32759i
\(501\) −30.9859 53.6692i −1.38435 2.39776i
\(502\) 26.7606 46.3506i 1.19438 2.06873i
\(503\) 12.2304 + 13.5833i 0.545327 + 0.605647i 0.951311 0.308233i \(-0.0997377\pi\)
−0.405984 + 0.913880i \(0.633071\pi\)
\(504\) 5.24359 + 16.1381i 0.233568 + 0.718848i
\(505\) −12.2782 + 13.6363i −0.546373 + 0.606808i
\(506\) −11.0092 4.90161i −0.489419 0.217903i
\(507\) −23.3924 + 4.97221i −1.03889 + 0.220824i
\(508\) 0.447274 + 4.25553i 0.0198446 + 0.188809i
\(509\) −1.08567 + 10.3295i −0.0481215 + 0.457845i 0.943756 + 0.330644i \(0.107266\pi\)
−0.991877 + 0.127201i \(0.959401\pi\)
\(510\) 62.7945 + 13.3474i 2.78059 + 0.591032i
\(511\) −3.48875 2.53472i −0.154333 0.112130i
\(512\) 3.69272 + 2.68292i 0.163197 + 0.118569i
\(513\) −5.36915 1.14125i −0.237054 0.0503873i
\(514\) −3.70152 + 35.2176i −0.163267 + 1.55338i
\(515\) 1.45956 + 13.8868i 0.0643159 + 0.611924i
\(516\) 1.90594 0.405120i 0.0839042 0.0178344i
\(517\) −5.38631 2.39814i −0.236890 0.105470i
\(518\) 20.8491 23.1553i 0.916058 1.01739i
\(519\) −7.05096 21.7006i −0.309503 0.952552i
\(520\) 9.68888 + 10.7606i 0.424885 + 0.471883i
\(521\) −4.62522 + 8.01111i −0.202635 + 0.350973i −0.949376 0.314141i \(-0.898284\pi\)
0.746742 + 0.665114i \(0.231617\pi\)
\(522\) 0.515537 + 0.892937i 0.0225645 + 0.0390828i
\(523\) −2.03184 + 6.25335i −0.0888461 + 0.273440i −0.985601 0.169087i \(-0.945918\pi\)
0.896755 + 0.442527i \(0.145918\pi\)
\(524\) −24.3598 + 10.8457i −1.06416 + 0.473796i
\(525\) 4.09367 2.97422i 0.178662 0.129806i
\(526\) −15.7047 −0.684759
\(527\) 23.1787 7.56684i 1.00968 0.329617i
\(528\) −0.753909 −0.0328097
\(529\) −22.3875 + 16.2655i −0.973371 + 0.707195i
\(530\) −30.2013 + 13.4465i −1.31186 + 0.584077i
\(531\) 10.1774 31.3227i 0.441660 1.35929i
\(532\) 12.3504 + 21.3916i 0.535460 + 0.927443i
\(533\) −6.99044 + 12.1078i −0.302790 + 0.524447i
\(534\) 8.65534 + 9.61273i 0.374553 + 0.415983i
\(535\) −1.40837 4.33453i −0.0608893 0.187398i
\(536\) 9.87206 10.9640i 0.426408 0.473574i
\(537\) 26.2267 + 11.6769i 1.13176 + 0.503894i
\(538\) −23.7439 + 5.04692i −1.02367 + 0.217588i
\(539\) 0.340034 + 3.23520i 0.0146463 + 0.139350i
\(540\) −1.02760 + 9.77697i −0.0442209 + 0.420734i
\(541\) 2.15513 + 0.458087i 0.0926562 + 0.0196947i 0.254006 0.967203i \(-0.418252\pi\)
−0.161350 + 0.986897i \(0.551585\pi\)
\(542\) 2.94425 + 2.13912i 0.126466 + 0.0918831i
\(543\) −30.7353 22.3305i −1.31898 0.958294i
\(544\) −22.1927 4.71720i −0.951503 0.202248i
\(545\) 3.07262 29.2341i 0.131617 1.25225i
\(546\) −1.86270 17.7224i −0.0797162 0.758449i
\(547\) 4.75717 1.01117i 0.203402 0.0432344i −0.105084 0.994463i \(-0.533511\pi\)
0.308486 + 0.951229i \(0.400178\pi\)
\(548\) −50.0440 22.2810i −2.13777 0.951797i
\(549\) −18.1807 + 20.1917i −0.775933 + 0.861761i
\(550\) 0.649903 + 2.00019i 0.0277119 + 0.0852886i
\(551\) 0.400155 + 0.444417i 0.0170472 + 0.0189328i
\(552\) −27.6639 + 47.9152i −1.17745 + 2.03941i
\(553\) −3.62661 6.28147i −0.154219 0.267115i
\(554\) 8.62905 26.5575i 0.366613 1.12832i
\(555\) 48.9218 21.7814i 2.07661 0.924568i
\(556\) −19.7421 + 14.3435i −0.837251 + 0.608298i
\(557\) 11.0363 0.467623 0.233811 0.972282i \(-0.424880\pi\)
0.233811 + 0.972282i \(0.424880\pi\)
\(558\) 18.1657 + 40.6488i 0.769016 + 1.72080i
\(559\) −0.437007 −0.0184834
\(560\) 1.30854 0.950708i 0.0552958 0.0401748i
\(561\) 7.46313 3.32280i 0.315094 0.140289i
\(562\) −15.3115 + 47.1238i −0.645875 + 1.98780i
\(563\) 5.59621 + 9.69292i 0.235852 + 0.408508i 0.959520 0.281641i \(-0.0908786\pi\)
−0.723668 + 0.690148i \(0.757545\pi\)
\(564\) −33.9694 + 58.8366i −1.43037 + 2.47747i
\(565\) −18.4809 20.5251i −0.777498 0.863499i
\(566\) −0.491164 1.51165i −0.0206452 0.0635393i
\(567\) −7.91790 + 8.79372i −0.332521 + 0.369301i
\(568\) −9.50839 4.23341i −0.398963 0.177630i
\(569\) 45.8966 9.75563i 1.92409 0.408977i 0.924471 0.381252i \(-0.124507\pi\)
0.999616 0.0277250i \(-0.00882627\pi\)
\(570\) 7.10700 + 67.6185i 0.297679 + 2.83223i
\(571\) 2.13862 20.3476i 0.0894983 0.851520i −0.854029 0.520225i \(-0.825848\pi\)
0.943527 0.331295i \(-0.107485\pi\)
\(572\) 4.52355 + 0.961511i 0.189139 + 0.0402028i
\(573\) 4.65097 + 3.37913i 0.194297 + 0.141165i
\(574\) 22.0514 + 16.0213i 0.920407 + 0.668715i
\(575\) 8.65001 + 1.83862i 0.360731 + 0.0766756i
\(576\) 4.62337 43.9885i 0.192641 1.83285i
\(577\) −0.381356 3.62836i −0.0158761 0.151051i 0.983712 0.179752i \(-0.0575295\pi\)
−0.999588 + 0.0287013i \(0.990863\pi\)
\(578\) −4.91538 + 1.04480i −0.204453 + 0.0434578i
\(579\) −59.6153 26.5425i −2.47753 1.10307i
\(580\) 0.716667 0.795939i 0.0297580 0.0330496i
\(581\) 1.32184 + 4.06822i 0.0548393 + 0.168778i
\(582\) −48.2507 53.5879i −2.00006 2.22129i
\(583\) −2.10348 + 3.64334i −0.0871173 + 0.150892i
\(584\) −4.11443 7.12641i −0.170256 0.294893i
\(585\) 5.07279 15.6124i 0.209734 0.645494i
\(586\) 18.9973 8.45815i 0.784772 0.349403i
\(587\) 18.5043 13.4442i 0.763755 0.554901i −0.136305 0.990667i \(-0.543523\pi\)
0.900060 + 0.435766i \(0.143523\pi\)
\(588\) 37.4838 1.54580
\(589\) 15.2076 + 20.8705i 0.626620 + 0.859954i
\(590\) −54.7914 −2.25573
\(591\) −12.7452 + 9.25996i −0.524269 + 0.380904i
\(592\) 3.11213 1.38561i 0.127908 0.0569482i
\(593\) −6.01340 + 18.5073i −0.246941 + 0.760005i 0.748371 + 0.663281i \(0.230837\pi\)
−0.995311 + 0.0967243i \(0.969163\pi\)
\(594\) 1.00179 + 1.73515i 0.0411040 + 0.0711943i
\(595\) −8.76336 + 15.1786i −0.359263 + 0.622261i
\(596\) −14.1530 15.7185i −0.579731 0.643856i
\(597\) 3.59033 + 11.0499i 0.146942 + 0.452242i
\(598\) 20.8390 23.1440i 0.852169 0.946430i
\(599\) 32.1311 + 14.3057i 1.31284 + 0.584514i 0.939299 0.343099i \(-0.111477\pi\)
0.373541 + 0.927614i \(0.378143\pi\)
\(600\) 9.44469 2.00753i 0.385578 0.0819571i
\(601\) −0.615470 5.85580i −0.0251055 0.238863i −0.999877 0.0156596i \(-0.995015\pi\)
0.974772 0.223204i \(-0.0716515\pi\)
\(602\) −0.0890566 + 0.847317i −0.00362968 + 0.0345341i
\(603\) −16.3607 3.47758i −0.666261 0.141618i
\(604\) 14.8600 + 10.7964i 0.604645 + 0.439300i
\(605\) −21.1463 15.3637i −0.859719 0.624622i
\(606\) 42.1504 + 8.95935i 1.71224 + 0.363949i
\(607\) −4.06457 + 38.6718i −0.164976 + 1.56964i 0.528356 + 0.849023i \(0.322809\pi\)
−0.693332 + 0.720618i \(0.743858\pi\)
\(608\) −2.51174 23.8976i −0.101864 0.969175i
\(609\) −0.513709 + 0.109192i −0.0208166 + 0.00442469i
\(610\) 41.2942 + 18.3854i 1.67195 + 0.744402i
\(611\) 10.1956 11.3233i 0.412469 0.458093i
\(612\) −15.5916 47.9859i −0.630252 1.93972i
\(613\) −30.5139 33.8892i −1.23245 1.36877i −0.905845 0.423609i \(-0.860763\pi\)
−0.326602 0.945162i \(-0.605904\pi\)
\(614\) 36.1505 62.6144i 1.45891 2.52691i
\(615\) 23.4231 + 40.5699i 0.944509 + 1.63594i
\(616\) 1.11010 3.41654i 0.0447272 0.137656i
\(617\) −6.05359 + 2.69523i −0.243708 + 0.108506i −0.524956 0.851129i \(-0.675918\pi\)
0.281248 + 0.959635i \(0.409252\pi\)
\(618\) 26.5288 19.2743i 1.06715 0.775328i
\(619\) 41.5360 1.66947 0.834736 0.550650i \(-0.185620\pi\)
0.834736 + 0.550650i \(0.185620\pi\)
\(620\) 34.3267 30.9944i 1.37859 1.24476i
\(621\) 8.42469 0.338071
\(622\) 33.0689 24.0260i 1.32594 0.963353i
\(623\) −3.22617 + 1.43638i −0.129254 + 0.0575474i
\(624\) 0.602062 1.85296i 0.0241018 0.0741776i
\(625\) 14.8341 + 25.6934i 0.593364 + 1.02774i
\(626\) 25.0006 43.3022i 0.999223 1.73071i
\(627\) 5.78944 + 6.42982i 0.231208 + 0.256782i
\(628\) 8.21338 + 25.2782i 0.327750 + 1.00871i
\(629\) −24.7008 + 27.4330i −0.984884 + 1.09382i
\(630\) −29.2373 13.0173i −1.16484 0.518622i
\(631\) −10.9012 + 2.31712i −0.433969 + 0.0922429i −0.419716 0.907655i \(-0.637870\pi\)
−0.0142529 + 0.999898i \(0.504537\pi\)
\(632\) −1.44675 13.7649i −0.0575486 0.547538i
\(633\) −4.94810 + 47.0780i −0.196669 + 1.87118i
\(634\) −2.29332 0.487460i −0.0910794 0.0193595i
\(635\) −2.60147 1.89008i −0.103236 0.0750056i
\(636\) 39.2177 + 28.4934i 1.55508 + 1.12983i
\(637\) −8.22302 1.74786i −0.325808 0.0692526i
\(638\) 0.0228170 0.217089i 0.000903334 0.00859464i
\(639\) 1.23343 + 11.7353i 0.0487936 + 0.464240i
\(640\) −46.6533 + 9.91646i −1.84413 + 0.391983i
\(641\) 16.0357 + 7.13957i 0.633374 + 0.281996i 0.698203 0.715900i \(-0.253983\pi\)
−0.0648289 + 0.997896i \(0.520650\pi\)
\(642\) −7.16176 + 7.95394i −0.282652 + 0.313917i
\(643\) −0.678617 2.08857i −0.0267621 0.0823651i 0.936783 0.349910i \(-0.113788\pi\)
−0.963545 + 0.267545i \(0.913788\pi\)
\(644\) −25.3674 28.1734i −0.999617 1.11019i
\(645\) −0.732145 + 1.26811i −0.0288282 + 0.0499318i
\(646\) −23.4341 40.5891i −0.922003 1.59696i
\(647\) −10.0259 + 30.8566i −0.394160 + 1.21310i 0.535454 + 0.844564i \(0.320140\pi\)
−0.929614 + 0.368535i \(0.879860\pi\)
\(648\) −20.6280 + 9.18418i −0.810345 + 0.360789i
\(649\) −5.64084 + 4.09831i −0.221422 + 0.160873i
\(650\) −5.43508 −0.213181
\(651\) −22.5507 + 2.40186i −0.883832 + 0.0941362i
\(652\) −56.7370 −2.22199
\(653\) −13.3407 + 9.69256i −0.522061 + 0.379299i −0.817380 0.576099i \(-0.804574\pi\)
0.295319 + 0.955399i \(0.404574\pi\)
\(654\) −63.0636 + 28.0777i −2.46598 + 1.09793i
\(655\) 6.19225 19.0578i 0.241951 0.744649i
\(656\) 1.49004 + 2.58083i 0.0581764 + 0.100764i
\(657\) −4.66457 + 8.07927i −0.181982 + 0.315202i
\(658\) −19.8772 22.0759i −0.774894 0.860607i
\(659\) −6.10043 18.7752i −0.237639 0.731377i −0.996760 0.0804282i \(-0.974371\pi\)
0.759122 0.650949i \(-0.225629\pi\)
\(660\) 10.3687 11.5156i 0.403602 0.448245i
\(661\) 10.7623 + 4.79169i 0.418605 + 0.186375i 0.605220 0.796058i \(-0.293085\pi\)
−0.186615 + 0.982433i \(0.559752\pi\)
\(662\) −60.2408 + 12.8046i −2.34132 + 0.497664i
\(663\) 2.20681 + 20.9964i 0.0857055 + 0.815433i
\(664\) −0.853219 + 8.11783i −0.0331113 + 0.315033i
\(665\) −18.1568 3.85935i −0.704091 0.149659i
\(666\) −54.5336 39.6210i −2.11313 1.53528i
\(667\) −0.742554 0.539497i −0.0287518 0.0208894i
\(668\) 79.2591 + 16.8470i 3.06663 + 0.651832i
\(669\) 1.65185 15.7163i 0.0638644 0.607629i
\(670\) 2.90866 + 27.6741i 0.112371 + 1.06914i
\(671\) 5.62649 1.19595i 0.217208 0.0461690i
\(672\) 19.2781 + 8.58318i 0.743671 + 0.331104i
\(673\) 33.7122 37.4412i 1.29951 1.44325i 0.472217 0.881482i \(-0.343454\pi\)
0.827293 0.561770i \(-0.189880\pi\)
\(674\) 22.7764 + 70.0985i 0.877314 + 2.70009i
\(675\) −0.983796 1.09262i −0.0378663 0.0420548i
\(676\) 15.6348 27.0802i 0.601337 1.04155i
\(677\) 1.98998 + 3.44674i 0.0764810 + 0.132469i 0.901729 0.432301i \(-0.142298\pi\)
−0.825248 + 0.564770i \(0.808965\pi\)
\(678\) −20.0433 + 61.6869i −0.769758 + 2.36907i
\(679\) 17.9849 8.00737i 0.690195 0.307295i
\(680\) −27.0574 + 19.6584i −1.03760 + 0.753864i
\(681\) 33.1770 1.27134
\(682\) 1.94693 9.22259i 0.0745519 0.353151i
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) 43.2314 31.4095i 1.65300 1.20097i
\(685\) 37.6075 16.7439i 1.43691 0.639753i
\(686\) −13.0604 + 40.1958i −0.498648 + 1.53468i
\(687\) 19.4238 + 33.6430i 0.741064 + 1.28356i
\(688\) −0.0465749 + 0.0806701i −0.00177565 + 0.00307552i
\(689\) −7.27477 8.07945i −0.277147 0.307803i
\(690\) −32.2468 99.2455i −1.22762 3.77821i
\(691\) 6.15301 6.83361i 0.234072 0.259963i −0.614653 0.788797i \(-0.710704\pi\)
0.848725 + 0.528834i \(0.177371\pi\)
\(692\) 27.2550 + 12.1347i 1.03608 + 0.461293i
\(693\) −3.98369 + 0.846760i −0.151328 + 0.0321658i
\(694\) −0.752867 7.16305i −0.0285785 0.271906i
\(695\) 1.91687 18.2378i 0.0727110 0.691799i
\(696\) −0.980270 0.208363i −0.0371570 0.00789797i
\(697\) −26.1251 18.9810i −0.989560 0.718957i
\(698\) 41.1196 + 29.8751i 1.55640 + 1.13079i
\(699\) 32.4854 + 6.90499i 1.22871 + 0.261171i
\(700\) −0.691576 + 6.57991i −0.0261391 + 0.248697i
\(701\) 4.23908 + 40.3321i 0.160108 + 1.52332i 0.719542 + 0.694449i \(0.244352\pi\)
−0.559434 + 0.828875i \(0.688981\pi\)
\(702\) −5.06468 + 1.07653i −0.191154 + 0.0406310i
\(703\) −35.7161 15.9018i −1.34706 0.599749i
\(704\) −6.26569 + 6.95876i −0.236147 + 0.262268i
\(705\) −15.7769 48.5564i −0.594193 1.82874i
\(706\) 7.61579 + 8.45820i 0.286624 + 0.318328i
\(707\) −5.88235 + 10.1885i −0.221229 + 0.383179i
\(708\) 40.1710 + 69.5782i 1.50972 + 2.61491i
\(709\) −11.5220 + 35.4612i −0.432719 + 1.33177i 0.462687 + 0.886521i \(0.346885\pi\)
−0.895406 + 0.445250i \(0.853115\pi\)
\(710\) 17.9336 7.98457i 0.673038 0.299656i
\(711\) −12.6946 + 9.22314i −0.476083 + 0.345895i
\(712\) −6.73883 −0.252548
\(713\) −29.4906 26.4793i −1.10443 0.991658i
\(714\) 41.1599 1.54037
\(715\) −2.81161 + 2.04276i −0.105148 + 0.0763948i
\(716\) −34.2921 + 15.2678i −1.28156 + 0.570585i
\(717\) 18.4196 56.6897i 0.687893 2.11712i
\(718\) 0.416347 + 0.721134i 0.0155379 + 0.0269125i
\(719\) 9.28994 16.0906i 0.346456 0.600080i −0.639161 0.769073i \(-0.720718\pi\)
0.985617 + 0.168993i \(0.0540516\pi\)
\(720\) −2.34136 2.60035i −0.0872575 0.0969093i
\(721\) 2.76647 + 8.51433i 0.103029 + 0.317090i
\(722\) 3.87752 4.30642i 0.144306 0.160268i
\(723\) −57.4036 25.5577i −2.13486 0.950501i
\(724\) 48.5887 10.3278i 1.80578 0.383831i
\(725\) 0.0167435 + 0.159303i 0.000621836 + 0.00591638i
\(726\) −6.41630 + 61.0470i −0.238131 + 2.26567i
\(727\) −16.0193 3.40501i −0.594123 0.126285i −0.0989697 0.995090i \(-0.531555\pi\)
−0.495153 + 0.868806i \(0.664888\pi\)
\(728\) 7.51065 + 5.45681i 0.278363 + 0.202243i
\(729\) 28.0140 + 20.3534i 1.03756 + 0.753829i
\(730\) 15.1812 + 3.22686i 0.561881 + 0.119432i
\(731\) 0.105509 1.00385i 0.00390238 0.0371287i
\(732\) −6.92826 65.9179i −0.256076 2.43640i
\(733\) 1.12618 0.239377i 0.0415964 0.00884158i −0.187067 0.982347i \(-0.559898\pi\)
0.228663 + 0.973506i \(0.426565\pi\)
\(734\) −61.9485 27.5812i −2.28656 1.01804i
\(735\) −18.8485 + 20.9334i −0.695237 + 0.772139i
\(736\) 11.3966 + 35.0751i 0.420084 + 1.29289i
\(737\) 2.36943 + 2.63151i 0.0872789 + 0.0969331i
\(738\) 29.4834 51.0668i 1.08530 1.87979i
\(739\) 10.3579 + 17.9404i 0.381022 + 0.659949i 0.991209 0.132309i \(-0.0422390\pi\)
−0.610187 + 0.792257i \(0.708906\pi\)
\(740\) −21.6374 + 66.5931i −0.795407 + 2.44801i
\(741\) −20.4266 + 9.09449i −0.750389 + 0.334095i
\(742\) −17.1479 + 12.4586i −0.629517 + 0.457371i
\(743\) −35.2367 −1.29271 −0.646354 0.763038i \(-0.723707\pi\)
−0.646354 + 0.763038i \(0.723707\pi\)
\(744\) −41.1756 13.3155i −1.50957 0.488171i
\(745\) 15.8950 0.582348
\(746\) −33.0959 + 24.0456i −1.21173 + 0.880370i
\(747\) 8.45390 3.76392i 0.309312 0.137715i
\(748\) −3.30083 + 10.1589i −0.120690 + 0.371447i
\(749\) −1.46104 2.53060i −0.0533853 0.0924660i
\(750\) 27.5429 47.7058i 1.00573 1.74197i
\(751\) −28.8702 32.0636i −1.05349 1.17002i −0.985033 0.172364i \(-0.944859\pi\)
−0.0684559 0.997654i \(-0.521807\pi\)
\(752\) −1.00364 3.08888i −0.0365989 0.112640i
\(753\) 39.4629 43.8279i 1.43811 1.59718i
\(754\) 0.515340 + 0.229444i 0.0187676 + 0.00835586i
\(755\) −13.5017 + 2.86987i −0.491377 + 0.104445i
\(756\) 0.658843 + 6.26847i 0.0239619 + 0.227982i
\(757\) 2.85766 27.1888i 0.103863 0.988194i −0.811168 0.584813i \(-0.801168\pi\)
0.915032 0.403382i \(-0.132165\pi\)
\(758\) 5.55342 + 1.18042i 0.201709 + 0.0428746i
\(759\) −10.7433 7.80543i −0.389955 0.283319i
\(760\) −28.6563 20.8201i −1.03947 0.755223i
\(761\) −16.8163 3.57441i −0.609589 0.129572i −0.107235 0.994234i \(-0.534200\pi\)
−0.502355 + 0.864662i \(0.667533\pi\)
\(762\) −0.789351 + 7.51017i −0.0285952 + 0.272065i