Properties

Label 961.2.g.l.732.1
Level $961$
Weight $2$
Character 961.732
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-6,12,-14,-3,-11,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 732.1
Root \(1.42343i\) of defining polynomial
Character \(\chi\) \(=\) 961.732
Dual form 961.2.g.l.235.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.86683 - 1.35633i) q^{2} +(2.32289 + 1.03422i) q^{3} +(1.02738 + 3.16196i) q^{4} +(1.24923 - 2.16373i) q^{5} +(-2.93370 - 5.08132i) q^{6} +(1.07187 - 1.19043i) q^{7} +(0.944583 - 2.90713i) q^{8} +(2.31884 + 2.57533i) q^{9} +(-5.26683 + 2.34494i) q^{10} +(0.717625 + 0.152536i) q^{11} +(-0.883657 + 8.40743i) q^{12} +(-0.198183 - 1.88559i) q^{13} +(-3.61560 + 0.768520i) q^{14} +(5.13960 - 3.73414i) q^{15} +(-0.326952 + 0.237545i) q^{16} +(-4.28354 + 0.910495i) q^{17} +(-0.835873 - 7.95280i) q^{18} +(0.484806 - 4.61262i) q^{19} +(8.12506 + 1.72703i) q^{20} +(3.72099 - 1.65669i) q^{21} +(-1.13279 - 1.25809i) q^{22} +(2.19973 - 6.77006i) q^{23} +(5.20077 - 5.77604i) q^{24} +(-0.621150 - 1.07586i) q^{25} +(-2.18751 + 3.78887i) q^{26} +(0.365721 + 1.12557i) q^{27} +(4.86530 + 2.16617i) q^{28} +(-0.104314 - 0.0757884i) q^{29} -14.6595 q^{30} -5.18091 q^{32} +(1.50921 + 1.09651i) q^{33} +(9.23157 + 4.11016i) q^{34} +(-1.23676 - 3.80635i) q^{35} +(-5.76075 + 9.97791i) q^{36} +(4.21474 + 7.30014i) q^{37} +(-7.16128 + 7.95341i) q^{38} +(1.48975 - 4.58499i) q^{39} +(-5.11023 - 5.67549i) q^{40} +(-6.73647 + 2.99927i) q^{41} +(-9.19348 - 1.95413i) q^{42} +(0.0240929 - 0.229229i) q^{43} +(0.254963 + 2.42581i) q^{44} +(8.46907 - 1.80016i) q^{45} +(-13.2889 + 9.65498i) q^{46} +(6.50168 - 4.72375i) q^{47} +(-1.00515 + 0.213651i) q^{48} +(0.463478 + 4.40970i) q^{49} +(-0.299645 + 2.85094i) q^{50} +(-10.8919 - 2.31514i) q^{51} +(5.75854 - 2.56387i) q^{52} +(-3.83695 - 4.26137i) q^{53} +(0.843912 - 2.59729i) q^{54} +(1.22652 - 1.36219i) q^{55} +(-2.44826 - 4.24051i) q^{56} +(5.89661 - 10.2132i) q^{57} +(0.0919419 + 0.282968i) q^{58} +(8.68208 + 3.86551i) q^{59} +(17.0875 + 12.4148i) q^{60} +7.84044 q^{61} +5.55122 q^{63} +(10.3258 + 7.50212i) q^{64} +(-4.32748 - 1.92672i) q^{65} +(-1.33021 - 4.09397i) q^{66} +(-2.41329 + 4.17994i) q^{67} +(-7.27978 - 12.6090i) q^{68} +(12.1115 - 13.4511i) q^{69} +(-2.85385 + 8.78324i) q^{70} +(-2.27840 - 2.53042i) q^{71} +(9.67714 - 4.30854i) q^{72} +(2.63322 + 0.559708i) q^{73} +(2.03321 - 19.3447i) q^{74} +(-0.330187 - 3.14152i) q^{75} +(15.0830 - 3.20599i) q^{76} +(0.950780 - 0.690782i) q^{77} +(-8.99987 + 6.53879i) q^{78} +(4.42900 - 0.941413i) q^{79} +(0.105544 + 1.00418i) q^{80} +(0.772154 - 7.34656i) q^{81} +(16.6438 + 3.53775i) q^{82} +(-2.43949 + 1.08613i) q^{83} +(9.06128 + 10.0636i) q^{84} +(-3.38106 + 10.4058i) q^{85} +(-0.355888 + 0.395253i) q^{86} +(-0.163928 - 0.283932i) q^{87} +(1.12130 - 1.94214i) q^{88} +(0.681255 + 2.09669i) q^{89} +(-18.2519 - 8.12627i) q^{90} +(-2.45708 - 1.78518i) q^{91} +23.6666 q^{92} -18.5445 q^{94} +(-9.37482 - 6.81121i) q^{95} +(-12.0347 - 5.35820i) q^{96} +(3.79778 + 11.6884i) q^{97} +(5.11577 - 8.86077i) q^{98} +(1.27122 + 2.20182i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 12 q^{3} - 14 q^{4} - 3 q^{5} - 11 q^{6} + 2 q^{7} + 17 q^{8} - 10 q^{9} - 2 q^{10} + 7 q^{11} - 5 q^{12} + 7 q^{13} - 6 q^{14} - 14 q^{15} - 2 q^{16} + 6 q^{17} - 3 q^{18} + 16 q^{19}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86683 1.35633i −1.32005 0.959070i −0.999932 0.0116917i \(-0.996278\pi\)
−0.320115 0.947379i \(-0.603722\pi\)
\(3\) 2.32289 + 1.03422i 1.34112 + 0.597107i 0.946787 0.321860i \(-0.104308\pi\)
0.394336 + 0.918966i \(0.370975\pi\)
\(4\) 1.02738 + 3.16196i 0.513691 + 1.58098i
\(5\) 1.24923 2.16373i 0.558673 0.967649i −0.438935 0.898519i \(-0.644644\pi\)
0.997608 0.0691304i \(-0.0220225\pi\)
\(6\) −2.93370 5.08132i −1.19768 2.07444i
\(7\) 1.07187 1.19043i 0.405127 0.449939i −0.505711 0.862703i \(-0.668770\pi\)
0.910838 + 0.412764i \(0.135436\pi\)
\(8\) 0.944583 2.90713i 0.333960 1.02782i
\(9\) 2.31884 + 2.57533i 0.772945 + 0.858443i
\(10\) −5.26683 + 2.34494i −1.66552 + 0.741536i
\(11\) 0.717625 + 0.152536i 0.216372 + 0.0459913i 0.314822 0.949151i \(-0.398055\pi\)
−0.0984501 + 0.995142i \(0.531388\pi\)
\(12\) −0.883657 + 8.40743i −0.255090 + 2.42702i
\(13\) −0.198183 1.88559i −0.0549662 0.522968i −0.987014 0.160633i \(-0.948646\pi\)
0.932048 0.362335i \(-0.118020\pi\)
\(14\) −3.61560 + 0.768520i −0.966310 + 0.205396i
\(15\) 5.13960 3.73414i 1.32704 0.964150i
\(16\) −0.326952 + 0.237545i −0.0817381 + 0.0593862i
\(17\) −4.28354 + 0.910495i −1.03891 + 0.220828i −0.695626 0.718404i \(-0.744873\pi\)
−0.343285 + 0.939231i \(0.611540\pi\)
\(18\) −0.835873 7.95280i −0.197017 1.87449i
\(19\) 0.484806 4.61262i 0.111222 1.05821i −0.786483 0.617611i \(-0.788100\pi\)
0.897706 0.440596i \(-0.145233\pi\)
\(20\) 8.12506 + 1.72703i 1.81682 + 0.386177i
\(21\) 3.72099 1.65669i 0.811987 0.361520i
\(22\) −1.13279 1.25809i −0.241512 0.268227i
\(23\) 2.19973 6.77006i 0.458675 1.41166i −0.408092 0.912941i \(-0.633806\pi\)
0.866766 0.498714i \(-0.166194\pi\)
\(24\) 5.20077 5.77604i 1.06160 1.17903i
\(25\) −0.621150 1.07586i −0.124230 0.215173i
\(26\) −2.18751 + 3.78887i −0.429005 + 0.743059i
\(27\) 0.365721 + 1.12557i 0.0703831 + 0.216617i
\(28\) 4.86530 + 2.16617i 0.919455 + 0.409368i
\(29\) −0.104314 0.0757884i −0.0193706 0.0140736i 0.578058 0.815996i \(-0.303811\pi\)
−0.597428 + 0.801922i \(0.703811\pi\)
\(30\) −14.6595 −2.67644
\(31\) 0 0
\(32\) −5.18091 −0.915865
\(33\) 1.50921 + 1.09651i 0.262720 + 0.190877i
\(34\) 9.23157 + 4.11016i 1.58320 + 0.704887i
\(35\) −1.23676 3.80635i −0.209050 0.643390i
\(36\) −5.76075 + 9.97791i −0.960125 + 1.66298i
\(37\) 4.21474 + 7.30014i 0.692899 + 1.20014i 0.970884 + 0.239550i \(0.0770000\pi\)
−0.277985 + 0.960585i \(0.589667\pi\)
\(38\) −7.16128 + 7.95341i −1.16171 + 1.29021i
\(39\) 1.48975 4.58499i 0.238551 0.734186i
\(40\) −5.11023 5.67549i −0.807999 0.897374i
\(41\) −6.73647 + 2.99927i −1.05206 + 0.468407i −0.858570 0.512696i \(-0.828647\pi\)
−0.193489 + 0.981102i \(0.561980\pi\)
\(42\) −9.19348 1.95413i −1.41858 0.301529i
\(43\) 0.0240929 0.229229i 0.00367414 0.0349571i −0.992531 0.121991i \(-0.961072\pi\)
0.996205 + 0.0870338i \(0.0277388\pi\)
\(44\) 0.254963 + 2.42581i 0.0384371 + 0.365705i
\(45\) 8.46907 1.80016i 1.26249 0.268351i
\(46\) −13.2889 + 9.65498i −1.95935 + 1.42355i
\(47\) 6.50168 4.72375i 0.948368 0.689030i −0.00205222 0.999998i \(-0.500653\pi\)
0.950420 + 0.310968i \(0.100653\pi\)
\(48\) −1.00515 + 0.213651i −0.145081 + 0.0308379i
\(49\) 0.463478 + 4.40970i 0.0662111 + 0.629957i
\(50\) −0.299645 + 2.85094i −0.0423763 + 0.403183i
\(51\) −10.8919 2.31514i −1.52517 0.324184i
\(52\) 5.75854 2.56387i 0.798566 0.355545i
\(53\) −3.83695 4.26137i −0.527046 0.585344i 0.419563 0.907726i \(-0.362183\pi\)
−0.946610 + 0.322382i \(0.895517\pi\)
\(54\) 0.843912 2.59729i 0.114842 0.353447i
\(55\) 1.22652 1.36219i 0.165384 0.183678i
\(56\) −2.44826 4.24051i −0.327162 0.566662i
\(57\) 5.89661 10.2132i 0.781025 1.35278i
\(58\) 0.0919419 + 0.282968i 0.0120726 + 0.0371555i
\(59\) 8.68208 + 3.86551i 1.13031 + 0.503247i 0.884718 0.466127i \(-0.154351\pi\)
0.245592 + 0.969373i \(0.421018\pi\)
\(60\) 17.0875 + 12.4148i 2.20599 + 1.60274i
\(61\) 7.84044 1.00387 0.501933 0.864907i \(-0.332623\pi\)
0.501933 + 0.864907i \(0.332623\pi\)
\(62\) 0 0
\(63\) 5.55122 0.699388
\(64\) 10.3258 + 7.50212i 1.29072 + 0.937765i
\(65\) −4.32748 1.92672i −0.536758 0.238980i
\(66\) −1.33021 4.09397i −0.163738 0.503933i
\(67\) −2.41329 + 4.17994i −0.294830 + 0.510661i −0.974945 0.222444i \(-0.928596\pi\)
0.680115 + 0.733105i \(0.261930\pi\)
\(68\) −7.27978 12.6090i −0.882804 1.52906i
\(69\) 12.1115 13.4511i 1.45805 1.61933i
\(70\) −2.85385 + 8.78324i −0.341100 + 1.04980i
\(71\) −2.27840 2.53042i −0.270396 0.300306i 0.592619 0.805483i \(-0.298094\pi\)
−0.863016 + 0.505177i \(0.831427\pi\)
\(72\) 9.67714 4.30854i 1.14046 0.507766i
\(73\) 2.63322 + 0.559708i 0.308195 + 0.0655088i 0.359413 0.933179i \(-0.382977\pi\)
−0.0512180 + 0.998687i \(0.516310\pi\)
\(74\) 2.03321 19.3447i 0.236356 2.24877i
\(75\) −0.330187 3.14152i −0.0381267 0.362751i
\(76\) 15.0830 3.20599i 1.73014 0.367752i
\(77\) 0.950780 0.690782i 0.108351 0.0787219i
\(78\) −8.99987 + 6.53879i −1.01903 + 0.740372i
\(79\) 4.42900 0.941413i 0.498301 0.105917i 0.0480968 0.998843i \(-0.484684\pi\)
0.450204 + 0.892925i \(0.351351\pi\)
\(80\) 0.105544 + 1.00418i 0.0118002 + 0.112271i
\(81\) 0.772154 7.34656i 0.0857949 0.816284i
\(82\) 16.6438 + 3.53775i 1.83800 + 0.390680i
\(83\) −2.43949 + 1.08613i −0.267768 + 0.119218i −0.536229 0.844072i \(-0.680152\pi\)
0.268461 + 0.963291i \(0.413485\pi\)
\(84\) 9.06128 + 10.0636i 0.988666 + 1.09803i
\(85\) −3.38106 + 10.4058i −0.366728 + 1.12867i
\(86\) −0.355888 + 0.395253i −0.0383764 + 0.0426213i
\(87\) −0.163928 0.283932i −0.0175749 0.0304407i
\(88\) 1.12130 1.94214i 0.119531 0.207033i
\(89\) 0.681255 + 2.09669i 0.0722129 + 0.222248i 0.980649 0.195776i \(-0.0627226\pi\)
−0.908436 + 0.418025i \(0.862723\pi\)
\(90\) −18.2519 8.12627i −1.92392 0.856584i
\(91\) −2.45708 1.78518i −0.257572 0.187137i
\(92\) 23.6666 2.46741
\(93\) 0 0
\(94\) −18.5445 −1.91272
\(95\) −9.37482 6.81121i −0.961837 0.698815i
\(96\) −12.0347 5.35820i −1.22829 0.546869i
\(97\) 3.79778 + 11.6884i 0.385606 + 1.18677i 0.936040 + 0.351894i \(0.114462\pi\)
−0.550434 + 0.834879i \(0.685538\pi\)
\(98\) 5.11577 8.86077i 0.516771 0.895073i
\(99\) 1.27122 + 2.20182i 0.127763 + 0.221292i
\(100\) 2.76367 3.06937i 0.276367 0.306937i
\(101\) 2.26952 6.98486i 0.225826 0.695020i −0.772381 0.635159i \(-0.780934\pi\)
0.998207 0.0598605i \(-0.0190656\pi\)
\(102\) 17.1932 + 19.0949i 1.70238 + 1.89068i
\(103\) 5.10558 2.27315i 0.503068 0.223980i −0.139481 0.990225i \(-0.544544\pi\)
0.642549 + 0.766245i \(0.277877\pi\)
\(104\) −5.66885 1.20495i −0.555876 0.118155i
\(105\) 1.06374 10.1208i 0.103810 0.987690i
\(106\) 1.38311 + 13.1594i 0.134340 + 1.27816i
\(107\) −1.78430 + 0.379264i −0.172495 + 0.0366649i −0.293349 0.956005i \(-0.594770\pi\)
0.120855 + 0.992670i \(0.461437\pi\)
\(108\) −3.18328 + 2.31279i −0.306312 + 0.222548i
\(109\) −9.51832 + 6.91546i −0.911689 + 0.662381i −0.941442 0.337176i \(-0.890528\pi\)
0.0297521 + 0.999557i \(0.490528\pi\)
\(110\) −4.13729 + 0.879409i −0.394475 + 0.0838483i
\(111\) 2.24045 + 21.3164i 0.212654 + 2.02326i
\(112\) −0.0676692 + 0.643829i −0.00639414 + 0.0608361i
\(113\) −10.8130 2.29837i −1.01720 0.216212i −0.331003 0.943630i \(-0.607387\pi\)
−0.686195 + 0.727417i \(0.740720\pi\)
\(114\) −24.8605 + 11.0686i −2.32840 + 1.03667i
\(115\) −11.9006 13.2170i −1.10974 1.23249i
\(116\) 0.132470 0.407700i 0.0122995 0.0378540i
\(117\) 4.39646 4.88276i 0.406452 0.451411i
\(118\) −10.9650 18.9920i −1.00941 1.74836i
\(119\) −3.50750 + 6.07518i −0.321532 + 0.556911i
\(120\) −6.00083 18.4687i −0.547799 1.68595i
\(121\) −9.55728 4.25518i −0.868844 0.386834i
\(122\) −14.6368 10.6342i −1.32515 0.962777i
\(123\) −18.7500 −1.69063
\(124\) 0 0
\(125\) 9.38846 0.839730
\(126\) −10.3632 7.52929i −0.923225 0.670762i
\(127\) 1.17576 + 0.523483i 0.104332 + 0.0464516i 0.458239 0.888829i \(-0.348480\pi\)
−0.353907 + 0.935281i \(0.615147\pi\)
\(128\) −5.89913 18.1557i −0.521414 1.60475i
\(129\) 0.293038 0.507557i 0.0258006 0.0446879i
\(130\) 5.46540 + 9.46635i 0.479347 + 0.830254i
\(131\) −5.36666 + 5.96028i −0.468888 + 0.520752i −0.930481 0.366339i \(-0.880611\pi\)
0.461594 + 0.887091i \(0.347278\pi\)
\(132\) −1.91657 + 5.89859i −0.166816 + 0.513406i
\(133\) −4.97134 5.52123i −0.431070 0.478752i
\(134\) 10.1746 4.53001i 0.878949 0.391334i
\(135\) 2.89231 + 0.614779i 0.248930 + 0.0529118i
\(136\) −1.39924 + 13.3128i −0.119983 + 1.14157i
\(137\) −1.72229 16.3865i −0.147145 1.39999i −0.780028 0.625745i \(-0.784795\pi\)
0.632883 0.774248i \(-0.281872\pi\)
\(138\) −40.8542 + 8.68382i −3.47774 + 0.739216i
\(139\) 5.93804 4.31424i 0.503658 0.365929i −0.306755 0.951789i \(-0.599243\pi\)
0.810412 + 0.585860i \(0.199243\pi\)
\(140\) 10.7649 7.82114i 0.909799 0.661007i
\(141\) 19.9881 4.24861i 1.68330 0.357797i
\(142\) 0.821298 + 7.81413i 0.0689218 + 0.655747i
\(143\) 0.145399 1.38338i 0.0121588 0.115684i
\(144\) −1.36990 0.291182i −0.114159 0.0242652i
\(145\) −0.294298 + 0.131030i −0.0244401 + 0.0108814i
\(146\) −4.15662 4.61639i −0.344004 0.382055i
\(147\) −3.48398 + 10.7226i −0.287354 + 0.884385i
\(148\) −18.7526 + 20.8269i −1.54145 + 1.71196i
\(149\) 3.18096 + 5.50959i 0.260595 + 0.451363i 0.966400 0.257043i \(-0.0827480\pi\)
−0.705805 + 0.708406i \(0.749415\pi\)
\(150\) −3.64454 + 6.31252i −0.297575 + 0.515415i
\(151\) 1.70724 + 5.25433i 0.138933 + 0.427592i 0.996181 0.0873120i \(-0.0278277\pi\)
−0.857248 + 0.514904i \(0.827828\pi\)
\(152\) −12.9515 5.76639i −1.05051 0.467716i
\(153\) −12.2777 8.92024i −0.992590 0.721159i
\(154\) −2.71187 −0.218529
\(155\) 0 0
\(156\) 16.0281 1.28327
\(157\) −6.46767 4.69903i −0.516176 0.375024i 0.298985 0.954258i \(-0.403352\pi\)
−0.815161 + 0.579234i \(0.803352\pi\)
\(158\) −9.54505 4.24973i −0.759363 0.338090i
\(159\) −4.50565 13.8670i −0.357321 1.09972i
\(160\) −6.47215 + 11.2101i −0.511669 + 0.886236i
\(161\) −5.70146 9.87521i −0.449338 0.778276i
\(162\) −11.4058 + 12.6675i −0.896127 + 0.995250i
\(163\) −5.27350 + 16.2302i −0.413052 + 1.27124i 0.500929 + 0.865488i \(0.332992\pi\)
−0.913981 + 0.405756i \(0.867008\pi\)
\(164\) −16.4045 18.2190i −1.28098 1.42267i
\(165\) 4.25789 1.89574i 0.331476 0.147583i
\(166\) 6.02725 + 1.28113i 0.467805 + 0.0994351i
\(167\) −2.54759 + 24.2387i −0.197138 + 1.87565i 0.232431 + 0.972613i \(0.425332\pi\)
−0.429570 + 0.903034i \(0.641335\pi\)
\(168\) −1.30143 12.3823i −0.100408 0.955314i
\(169\) 9.19975 1.95547i 0.707673 0.150421i
\(170\) 20.4256 14.8401i 1.56657 1.13818i
\(171\) 13.0032 9.44737i 0.994379 0.722458i
\(172\) 0.749565 0.159325i 0.0571538 0.0121484i
\(173\) −0.937997 8.92444i −0.0713146 0.678513i −0.970526 0.240998i \(-0.922525\pi\)
0.899211 0.437515i \(-0.144141\pi\)
\(174\) −0.0790797 + 0.752393i −0.00599501 + 0.0570387i
\(175\) −1.94653 0.413747i −0.147144 0.0312763i
\(176\) −0.270863 + 0.120596i −0.0204171 + 0.00909027i
\(177\) 16.1698 + 17.9583i 1.21539 + 1.34983i
\(178\) 1.57201 4.83816i 0.117827 0.362635i
\(179\) 7.55483 8.39049i 0.564675 0.627135i −0.391413 0.920215i \(-0.628014\pi\)
0.956088 + 0.293080i \(0.0946803\pi\)
\(180\) 14.3930 + 24.9294i 1.07279 + 1.85813i
\(181\) −7.47052 + 12.9393i −0.555279 + 0.961772i 0.442602 + 0.896718i \(0.354055\pi\)
−0.997882 + 0.0650542i \(0.979278\pi\)
\(182\) 2.16567 + 6.66523i 0.160530 + 0.494060i
\(183\) 18.2125 + 8.10873i 1.34631 + 0.599415i
\(184\) −17.6036 12.7898i −1.29775 0.942874i
\(185\) 21.0607 1.54841
\(186\) 0 0
\(187\) −3.21286 −0.234947
\(188\) 21.6160 + 15.7050i 1.57651 + 1.14540i
\(189\) 1.73192 + 0.771100i 0.125979 + 0.0560893i
\(190\) 8.26294 + 25.4307i 0.599457 + 1.84494i
\(191\) −1.13046 + 1.95802i −0.0817975 + 0.141677i −0.904022 0.427486i \(-0.859399\pi\)
0.822225 + 0.569163i \(0.192733\pi\)
\(192\) 16.2269 + 28.1057i 1.17107 + 2.02836i
\(193\) 17.1727 19.0723i 1.23612 1.37285i 0.333307 0.942818i \(-0.391835\pi\)
0.902813 0.430033i \(-0.141498\pi\)
\(194\) 8.76347 26.9712i 0.629181 1.93642i
\(195\) −8.05963 8.95113i −0.577162 0.641004i
\(196\) −13.4671 + 5.99594i −0.961936 + 0.428282i
\(197\) −6.06032 1.28816i −0.431780 0.0917776i −0.0131056 0.999914i \(-0.504172\pi\)
−0.418674 + 0.908136i \(0.637505\pi\)
\(198\) 0.613244 5.83463i 0.0435813 0.414649i
\(199\) −0.477625 4.54430i −0.0338579 0.322137i −0.998321 0.0579199i \(-0.981553\pi\)
0.964463 0.264217i \(-0.0851135\pi\)
\(200\) −3.71440 + 0.789519i −0.262647 + 0.0558274i
\(201\) −9.92879 + 7.21369i −0.700323 + 0.508814i
\(202\) −13.7106 + 9.96132i −0.964673 + 0.700876i
\(203\) −0.202031 + 0.0429430i −0.0141798 + 0.00301401i
\(204\) −3.86974 36.8182i −0.270936 2.57779i
\(205\) −1.92579 + 18.3227i −0.134503 + 1.27971i
\(206\) −12.6144 2.68127i −0.878886 0.186813i
\(207\) 22.5359 10.0336i 1.56636 0.697386i
\(208\) 0.512708 + 0.569420i 0.0355499 + 0.0394822i
\(209\) 1.05150 3.23618i 0.0727336 0.223851i
\(210\) −15.7130 + 17.4510i −1.08430 + 1.20424i
\(211\) 9.30839 + 16.1226i 0.640816 + 1.10993i 0.985251 + 0.171115i \(0.0547371\pi\)
−0.344435 + 0.938810i \(0.611930\pi\)
\(212\) 9.53225 16.5103i 0.654678 1.13394i
\(213\) −2.67547 8.23426i −0.183321 0.564203i
\(214\) 3.84539 + 1.71208i 0.262865 + 0.117035i
\(215\) −0.465892 0.338490i −0.0317736 0.0230849i
\(216\) 3.61764 0.246149
\(217\) 0 0
\(218\) 27.1487 1.83874
\(219\) 5.53783 + 4.02347i 0.374212 + 0.271881i
\(220\) 5.56731 + 2.47872i 0.375348 + 0.167116i
\(221\) 2.56575 + 7.89656i 0.172591 + 0.531180i
\(222\) 24.7296 42.8329i 1.65974 2.87475i
\(223\) 3.10748 + 5.38231i 0.208092 + 0.360426i 0.951113 0.308842i \(-0.0999413\pi\)
−0.743021 + 0.669268i \(0.766608\pi\)
\(224\) −5.55324 + 6.16750i −0.371042 + 0.412084i
\(225\) 1.33036 4.09441i 0.0886904 0.272961i
\(226\) 17.0686 + 18.9566i 1.13539 + 1.26097i
\(227\) −11.9198 + 5.30702i −0.791142 + 0.352239i −0.762200 0.647342i \(-0.775881\pi\)
−0.0289423 + 0.999581i \(0.509214\pi\)
\(228\) 38.3519 + 8.15194i 2.53992 + 0.539876i
\(229\) 1.59698 15.1942i 0.105531 1.00406i −0.805743 0.592265i \(-0.798234\pi\)
0.911275 0.411799i \(-0.135099\pi\)
\(230\) 4.28983 + 40.8150i 0.282863 + 2.69126i
\(231\) 2.92298 0.621299i 0.192318 0.0408785i
\(232\) −0.318860 + 0.231665i −0.0209342 + 0.0152096i
\(233\) −10.5668 + 7.67721i −0.692253 + 0.502951i −0.877400 0.479760i \(-0.840724\pi\)
0.185147 + 0.982711i \(0.440724\pi\)
\(234\) −14.8301 + 3.15223i −0.969471 + 0.206068i
\(235\) −2.09882 19.9689i −0.136912 1.30263i
\(236\) −3.30277 + 31.4237i −0.214992 + 2.04551i
\(237\) 11.2617 + 2.39375i 0.731527 + 0.155491i
\(238\) 14.7879 6.58398i 0.958554 0.426776i
\(239\) 15.6859 + 17.4210i 1.01464 + 1.12687i 0.991886 + 0.127128i \(0.0405757\pi\)
0.0227507 + 0.999741i \(0.492758\pi\)
\(240\) −0.793379 + 2.44177i −0.0512124 + 0.157616i
\(241\) −16.5356 + 18.3647i −1.06515 + 1.18297i −0.0826776 + 0.996576i \(0.526347\pi\)
−0.982475 + 0.186395i \(0.940319\pi\)
\(242\) 12.0704 + 20.9065i 0.775914 + 1.34392i
\(243\) 11.1668 19.3415i 0.716353 1.24076i
\(244\) 8.05513 + 24.7911i 0.515677 + 1.58709i
\(245\) 10.1204 + 4.50588i 0.646567 + 0.287870i
\(246\) 35.0030 + 25.4312i 2.23171 + 1.62143i
\(247\) −8.79358 −0.559522
\(248\) 0 0
\(249\) −6.78996 −0.430296
\(250\) −17.5266 12.7339i −1.10848 0.805360i
\(251\) 21.1889 + 9.43391i 1.33743 + 0.595463i 0.945827 0.324671i \(-0.105253\pi\)
0.391605 + 0.920134i \(0.371920\pi\)
\(252\) 5.70323 + 17.5527i 0.359270 + 1.10572i
\(253\) 2.61125 4.52282i 0.164168 0.284348i
\(254\) −1.48493 2.57198i −0.0931729 0.161380i
\(255\) −18.6158 + 20.6749i −1.16577 + 1.29471i
\(256\) −5.72420 + 17.6173i −0.357763 + 1.10108i
\(257\) 10.2686 + 11.4044i 0.640535 + 0.711386i 0.972760 0.231814i \(-0.0744661\pi\)
−0.332225 + 0.943200i \(0.607799\pi\)
\(258\) −1.23547 + 0.550066i −0.0769169 + 0.0342456i
\(259\) 13.2079 + 2.80743i 0.820700 + 0.174445i
\(260\) 1.64623 15.6628i 0.102095 0.971365i
\(261\) −0.0467066 0.444383i −0.00289106 0.0275066i
\(262\) 18.1028 3.84786i 1.11839 0.237722i
\(263\) −5.50607 + 4.00039i −0.339519 + 0.246675i −0.744459 0.667668i \(-0.767292\pi\)
0.404940 + 0.914343i \(0.367292\pi\)
\(264\) 4.61325 3.35173i 0.283926 0.206284i
\(265\) −14.0137 + 2.97870i −0.860854 + 0.182980i
\(266\) 1.79202 + 17.0500i 0.109876 + 1.04540i
\(267\) −0.585951 + 5.57495i −0.0358596 + 0.341181i
\(268\) −15.6962 3.33632i −0.958796 0.203798i
\(269\) −9.61017 + 4.27873i −0.585943 + 0.260878i −0.678225 0.734854i \(-0.737250\pi\)
0.0922822 + 0.995733i \(0.470584\pi\)
\(270\) −4.56560 5.07061i −0.277854 0.308588i
\(271\) 0.487363 1.49995i 0.0296052 0.0911154i −0.935162 0.354220i \(-0.884746\pi\)
0.964767 + 0.263105i \(0.0847464\pi\)
\(272\) 1.18423 1.31522i 0.0718046 0.0797470i
\(273\) −3.86128 6.68794i −0.233695 0.404772i
\(274\) −19.0103 + 32.9268i −1.14845 + 1.98918i
\(275\) −0.281645 0.866813i −0.0169838 0.0522708i
\(276\) 54.9750 + 24.4765i 3.30911 + 1.47331i
\(277\) 9.79020 + 7.11300i 0.588236 + 0.427379i 0.841684 0.539970i \(-0.181565\pi\)
−0.253448 + 0.967349i \(0.581565\pi\)
\(278\) −16.9368 −1.01580
\(279\) 0 0
\(280\) −12.2337 −0.731106
\(281\) 17.3718 + 12.6214i 1.03632 + 0.752927i 0.969563 0.244842i \(-0.0787362\pi\)
0.0667525 + 0.997770i \(0.478736\pi\)
\(282\) −43.0769 19.1791i −2.56519 1.14210i
\(283\) −0.212853 0.655094i −0.0126528 0.0389413i 0.944531 0.328423i \(-0.106517\pi\)
−0.957184 + 0.289482i \(0.906517\pi\)
\(284\) 5.66030 9.80392i 0.335877 0.581756i
\(285\) −14.7324 25.5173i −0.872675 1.51152i
\(286\) −2.14775 + 2.38532i −0.126999 + 0.141047i
\(287\) −3.65018 + 11.2341i −0.215463 + 0.663127i
\(288\) −12.0137 13.3426i −0.707913 0.786217i
\(289\) 1.98947 0.885767i 0.117027 0.0521040i
\(290\) 0.727123 + 0.154555i 0.0426981 + 0.00907576i
\(291\) −3.26649 + 31.0785i −0.191485 + 1.82186i
\(292\) 0.935550 + 8.90116i 0.0547489 + 0.520901i
\(293\) −8.81495 + 1.87368i −0.514975 + 0.109461i −0.458066 0.888918i \(-0.651458\pi\)
−0.0569086 + 0.998379i \(0.518124\pi\)
\(294\) 21.0474 15.2918i 1.22751 0.891837i
\(295\) 19.2098 13.9568i 1.11844 0.812594i
\(296\) 25.2036 5.35719i 1.46493 0.311380i
\(297\) 0.0907602 + 0.863526i 0.00526644 + 0.0501068i
\(298\) 1.53451 14.5999i 0.0888918 0.845749i
\(299\) −13.2015 2.80607i −0.763463 0.162279i
\(300\) 9.59413 4.27158i 0.553917 0.246620i
\(301\) −0.247056 0.274384i −0.0142401 0.0158152i
\(302\) 3.93949 12.1245i 0.226692 0.697688i
\(303\) 12.4957 13.8779i 0.717861 0.797265i
\(304\) 0.937195 + 1.62327i 0.0537518 + 0.0931009i
\(305\) 9.79451 16.9646i 0.560832 0.971389i
\(306\) 10.8215 + 33.3051i 0.618623 + 1.90393i
\(307\) −28.6238 12.7441i −1.63365 0.727346i −0.634679 0.772776i \(-0.718868\pi\)
−0.998968 + 0.0454296i \(0.985534\pi\)
\(308\) 3.16104 + 2.29663i 0.180117 + 0.130863i
\(309\) 14.2107 0.808416
\(310\) 0 0
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) −11.9219 8.66180i −0.674947 0.490378i
\(313\) 19.7953 + 8.81346i 1.11890 + 0.498166i 0.880996 0.473123i \(-0.156873\pi\)
0.237903 + 0.971289i \(0.423540\pi\)
\(314\) 5.70058 + 17.5446i 0.321702 + 0.990098i
\(315\) 6.93475 12.0113i 0.390729 0.676762i
\(316\) 7.52698 + 13.0371i 0.423426 + 0.733395i
\(317\) 0.679868 0.755070i 0.0381852 0.0424089i −0.723750 0.690063i \(-0.757583\pi\)
0.761935 + 0.647654i \(0.224250\pi\)
\(318\) −10.3969 + 31.9984i −0.583030 + 1.79438i
\(319\) −0.0632977 0.0702992i −0.00354399 0.00393600i
\(320\) 29.1318 12.9703i 1.62852 0.725063i
\(321\) −4.53698 0.964364i −0.253229 0.0538256i
\(322\) −2.75041 + 26.1684i −0.153274 + 1.45831i
\(323\) 2.12308 + 20.1998i 0.118131 + 1.12394i
\(324\) 24.0228 5.10620i 1.33460 0.283678i
\(325\) −1.90553 + 1.38445i −0.105700 + 0.0767955i
\(326\) 31.8582 23.1463i 1.76446 1.28196i
\(327\) −29.2621 + 6.21986i −1.61820 + 0.343959i
\(328\) 2.35610 + 22.4168i 0.130094 + 1.23776i
\(329\) 1.34565 12.8030i 0.0741881 0.705853i
\(330\) −10.5200 2.23609i −0.579107 0.123093i
\(331\) −24.3820 + 10.8556i −1.34016 + 0.596676i −0.946537 0.322597i \(-0.895444\pi\)
−0.393621 + 0.919273i \(0.628778\pi\)
\(332\) −5.94058 6.59768i −0.326032 0.362095i
\(333\) −9.02697 + 27.7822i −0.494675 + 1.52245i
\(334\) 37.6316 41.7941i 2.05911 2.28687i
\(335\) 6.02951 + 10.4434i 0.329427 + 0.570584i
\(336\) −0.823049 + 1.42556i −0.0449010 + 0.0777708i
\(337\) −9.87048 30.3782i −0.537679 1.65481i −0.737788 0.675033i \(-0.764129\pi\)
0.200108 0.979774i \(-0.435871\pi\)
\(338\) −19.8266 8.82738i −1.07843 0.480146i
\(339\) −22.7404 16.5218i −1.23509 0.897343i
\(340\) −36.3765 −1.97279
\(341\) 0 0
\(342\) −37.0885 −2.00552
\(343\) 14.8178 + 10.7658i 0.800088 + 0.581298i
\(344\) −0.643640 0.286567i −0.0347027 0.0154507i
\(345\) −13.9746 43.0095i −0.752368 2.31555i
\(346\) −10.3534 + 17.9326i −0.556603 + 0.964065i
\(347\) 1.56066 + 2.70314i 0.0837804 + 0.145112i 0.904871 0.425686i \(-0.139967\pi\)
−0.821090 + 0.570798i \(0.806634\pi\)
\(348\) 0.729364 0.810041i 0.0390980 0.0434227i
\(349\) −6.80655 + 20.9484i −0.364346 + 1.12134i 0.586043 + 0.810280i \(0.300685\pi\)
−0.950389 + 0.311063i \(0.899315\pi\)
\(350\) 3.07265 + 3.41253i 0.164240 + 0.182407i
\(351\) 2.04989 0.912671i 0.109415 0.0487147i
\(352\) −3.71795 0.790275i −0.198167 0.0421218i
\(353\) 0.515575 4.90537i 0.0274413 0.261087i −0.972196 0.234167i \(-0.924764\pi\)
0.999638 0.0269192i \(-0.00856970\pi\)
\(354\) −5.82873 55.4567i −0.309794 2.94749i
\(355\) −8.32139 + 1.76877i −0.441654 + 0.0938764i
\(356\) −5.92973 + 4.30820i −0.314275 + 0.228334i
\(357\) −14.4306 + 10.4845i −0.763750 + 0.554897i
\(358\) −25.4838 + 5.41676i −1.34686 + 0.286285i
\(359\) 0.0377201 + 0.358883i 0.00199079 + 0.0189411i 0.995472 0.0950532i \(-0.0303021\pi\)
−0.993481 + 0.113994i \(0.963635\pi\)
\(360\) 2.76645 26.3211i 0.145805 1.38724i
\(361\) −2.45641 0.522126i −0.129285 0.0274803i
\(362\) 31.4962 14.0230i 1.65540 0.737033i
\(363\) −17.7998 19.7686i −0.934246 1.03758i
\(364\) 3.12029 9.60325i 0.163547 0.503347i
\(365\) 4.50055 4.99837i 0.235570 0.261627i
\(366\) −23.0015 39.8398i −1.20231 2.08246i
\(367\) −14.6935 + 25.4498i −0.766992 + 1.32847i 0.172195 + 0.985063i \(0.444914\pi\)
−0.939187 + 0.343406i \(0.888419\pi\)
\(368\) 0.888987 + 2.73602i 0.0463416 + 0.142625i
\(369\) −23.3449 10.3938i −1.21528 0.541080i
\(370\) −39.3167 28.5653i −2.04398 1.48504i
\(371\) −9.18555 −0.476890
\(372\) 0 0
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) 5.99786 + 4.35770i 0.310142 + 0.225331i
\(375\) 21.8084 + 9.70973i 1.12618 + 0.501408i
\(376\) −7.59116 23.3632i −0.391484 1.20486i
\(377\) −0.122233 + 0.211713i −0.00629530 + 0.0109038i
\(378\) −2.18733 3.78857i −0.112504 0.194863i
\(379\) −1.64634 + 1.82845i −0.0845669 + 0.0939211i −0.783943 0.620833i \(-0.786795\pi\)
0.699376 + 0.714754i \(0.253461\pi\)
\(380\) 11.9052 36.6405i 0.610725 1.87962i
\(381\) 2.18978 + 2.43199i 0.112186 + 0.124595i
\(382\) 4.76611 2.12201i 0.243855 0.108571i
\(383\) −18.7001 3.97484i −0.955533 0.203105i −0.296343 0.955082i \(-0.595767\pi\)
−0.659190 + 0.751977i \(0.729101\pi\)
\(384\) 5.07387 48.2747i 0.258925 2.46351i
\(385\) −0.306923 2.92018i −0.0156422 0.148826i
\(386\) −57.9268 + 12.3127i −2.94840 + 0.626701i
\(387\) 0.646208 0.469497i 0.0328486 0.0238659i
\(388\) −33.0563 + 24.0168i −1.67818 + 1.21927i
\(389\) 5.15587 1.09591i 0.261413 0.0555651i −0.0753405 0.997158i \(-0.524004\pi\)
0.336754 + 0.941593i \(0.390671\pi\)
\(390\) 2.90526 + 27.6417i 0.147114 + 1.39969i
\(391\) −3.25851 + 31.0027i −0.164790 + 1.56787i
\(392\) 13.2573 + 2.81793i 0.669597 + 0.142327i
\(393\) −18.6304 + 8.29480i −0.939781 + 0.418417i
\(394\) 9.56640 + 10.6246i 0.481949 + 0.535258i
\(395\) 3.49587 10.7592i 0.175897 0.541354i
\(396\) −5.65604 + 6.28167i −0.284227 + 0.315666i
\(397\) −8.46275 14.6579i −0.424733 0.735660i 0.571662 0.820489i \(-0.306299\pi\)
−0.996395 + 0.0848295i \(0.972965\pi\)
\(398\) −5.27193 + 9.13124i −0.264258 + 0.457708i
\(399\) −5.83773 17.9667i −0.292252 0.899460i
\(400\) 0.458652 + 0.204205i 0.0229326 + 0.0102103i
\(401\) 30.7747 + 22.3591i 1.53682 + 1.11656i 0.952293 + 0.305186i \(0.0987186\pi\)
0.584524 + 0.811377i \(0.301281\pi\)
\(402\) 28.3195 1.41245
\(403\) 0 0
\(404\) 24.4175 1.21482
\(405\) −14.9314 10.8483i −0.741945 0.539055i
\(406\) 0.435402 + 0.193854i 0.0216087 + 0.00962079i
\(407\) 1.91107 + 5.88166i 0.0947281 + 0.291543i
\(408\) −17.0187 + 29.4772i −0.842550 + 1.45934i
\(409\) 0.249342 + 0.431873i 0.0123292 + 0.0213547i 0.872124 0.489285i \(-0.162742\pi\)
−0.859795 + 0.510639i \(0.829409\pi\)
\(410\) 28.4467 31.5933i 1.40488 1.56028i
\(411\) 12.9465 39.8453i 0.638605 1.96542i
\(412\) 12.4330 + 13.8082i 0.612529 + 0.680283i
\(413\) 13.9076 6.19208i 0.684350 0.304692i
\(414\) −55.6796 11.8351i −2.73650 0.581662i
\(415\) −0.697389 + 6.63521i −0.0342335 + 0.325710i
\(416\) 1.02677 + 9.76908i 0.0503416 + 0.478968i
\(417\) 18.2553 3.88028i 0.893966 0.190018i
\(418\) −6.35229 + 4.61521i −0.310701 + 0.225737i
\(419\) −10.9298 + 7.94098i −0.533957 + 0.387942i −0.821836 0.569725i \(-0.807050\pi\)
0.287879 + 0.957667i \(0.407050\pi\)
\(420\) 33.0945 7.03444i 1.61484 0.343246i
\(421\) 3.23151 + 30.7458i 0.157494 + 1.49846i 0.732758 + 0.680489i \(0.238233\pi\)
−0.575264 + 0.817968i \(0.695101\pi\)
\(422\) 4.49041 42.7234i 0.218590 2.07974i
\(423\) 27.2415 + 5.79037i 1.32453 + 0.281537i
\(424\) −16.0127 + 7.12930i −0.777644 + 0.346229i
\(425\) 3.64029 + 4.04295i 0.176580 + 0.196112i
\(426\) −6.17373 + 19.0008i −0.299118 + 0.920591i
\(427\) 8.40390 9.33347i 0.406693 0.451678i
\(428\) −3.03237 5.25223i −0.146575 0.253876i
\(429\) 1.76846 3.06306i 0.0853820 0.147886i
\(430\) 0.410636 + 1.26381i 0.0198026 + 0.0609462i
\(431\) −11.0126 4.90313i −0.530458 0.236175i 0.123988 0.992284i \(-0.460432\pi\)
−0.654446 + 0.756108i \(0.727098\pi\)
\(432\) −0.386948 0.281134i −0.0186170 0.0135261i
\(433\) 32.3919 1.55665 0.778327 0.627860i \(-0.216069\pi\)
0.778327 + 0.627860i \(0.216069\pi\)
\(434\) 0 0
\(435\) −0.819136 −0.0392745
\(436\) −31.6454 22.9917i −1.51554 1.10110i
\(437\) −30.1613 13.4287i −1.44281 0.642380i
\(438\) −4.88102 15.0222i −0.233224 0.717790i
\(439\) −6.18408 + 10.7111i −0.295150 + 0.511215i −0.975020 0.222118i \(-0.928703\pi\)
0.679870 + 0.733333i \(0.262036\pi\)
\(440\) −2.80151 4.85236i −0.133557 0.231327i
\(441\) −10.2817 + 11.4190i −0.489604 + 0.543760i
\(442\) 5.92053 18.2215i 0.281611 0.866709i
\(443\) −3.16058 3.51017i −0.150163 0.166773i 0.663370 0.748292i \(-0.269126\pi\)
−0.813533 + 0.581518i \(0.802459\pi\)
\(444\) −65.0998 + 28.9843i −3.08950 + 1.37553i
\(445\) 5.38771 + 1.14519i 0.255402 + 0.0542873i
\(446\) 1.49906 14.2626i 0.0709826 0.675354i
\(447\) 1.69092 + 16.0880i 0.0799777 + 0.760937i
\(448\) 19.9986 4.25083i 0.944844 0.200833i
\(449\) −12.9315 + 9.39528i −0.610275 + 0.443390i −0.849511 0.527571i \(-0.823103\pi\)
0.239236 + 0.970961i \(0.423103\pi\)
\(450\) −8.03692 + 5.83917i −0.378864 + 0.275261i
\(451\) −5.29175 + 1.12480i −0.249179 + 0.0529646i
\(452\) −3.84171 36.5515i −0.180699 1.71924i
\(453\) −1.46840 + 13.9709i −0.0689916 + 0.656411i
\(454\) 29.4502 + 6.25984i 1.38217 + 0.293789i
\(455\) −6.93210 + 3.08637i −0.324982 + 0.144691i
\(456\) −24.1213 26.7894i −1.12958 1.25453i
\(457\) −1.40842 + 4.33468i −0.0658832 + 0.202768i −0.978579 0.205872i \(-0.933997\pi\)
0.912696 + 0.408640i \(0.133997\pi\)
\(458\) −23.5897 + 26.1990i −1.10227 + 1.22420i
\(459\) −2.59141 4.48846i −0.120957 0.209503i
\(460\) 29.5650 51.2081i 1.37848 2.38759i
\(461\) 5.25050 + 16.1594i 0.244540 + 0.752618i 0.995712 + 0.0925105i \(0.0294892\pi\)
−0.751171 + 0.660107i \(0.770511\pi\)
\(462\) −6.29939 2.80467i −0.293074 0.130485i
\(463\) 22.1896 + 16.1217i 1.03124 + 0.749239i 0.968556 0.248795i \(-0.0800345\pi\)
0.0626822 + 0.998034i \(0.480035\pi\)
\(464\) 0.0521088 0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) 18.5350 + 13.4665i 0.857697 + 0.623153i 0.927257 0.374425i \(-0.122160\pi\)
−0.0695608 + 0.997578i \(0.522160\pi\)
\(468\) 19.9559 + 8.88495i 0.922463 + 0.410707i
\(469\) 2.38919 + 7.35318i 0.110323 + 0.339538i
\(470\) −23.1663 + 40.1253i −1.06858 + 1.85084i
\(471\) −10.1639 17.6043i −0.468327 0.811165i
\(472\) 19.4385 21.5886i 0.894728 0.993696i
\(473\) 0.0522553 0.160825i 0.00240270 0.00739476i
\(474\) −17.7770 19.7433i −0.816524 0.906841i
\(475\) −5.26368 + 2.34354i −0.241514 + 0.107529i
\(476\) −22.8130 4.84905i −1.04563 0.222256i
\(477\) 2.07716 19.7628i 0.0951065 0.904878i
\(478\) −5.65432 53.7972i −0.258622 2.46063i
\(479\) −8.84935 + 1.88099i −0.404337 + 0.0859445i −0.405591 0.914055i \(-0.632934\pi\)
0.00125373 + 0.999999i \(0.499601\pi\)
\(480\) −26.6278 + 19.3462i −1.21539 + 0.883031i
\(481\) 12.9298 9.39403i 0.589547 0.428331i
\(482\) 55.7777 11.8559i 2.54060 0.540022i
\(483\) −3.03075 28.8356i −0.137904 1.31207i
\(484\) 3.63570 34.5914i 0.165259 1.57234i
\(485\) 30.0347 + 6.38408i 1.36381 + 0.289886i
\(486\) −47.0800 + 20.9614i −2.13559 + 0.950828i
\(487\) 15.8066 + 17.5551i 0.716268 + 0.795496i 0.985876 0.167474i \(-0.0535611\pi\)
−0.269609 + 0.962970i \(0.586894\pi\)
\(488\) 7.40594 22.7931i 0.335251 1.03180i
\(489\) −29.0353 + 32.2470i −1.31302 + 1.45826i
\(490\) −12.7815 22.1383i −0.577411 1.00011i
\(491\) 4.61346 7.99074i 0.208202 0.360617i −0.742946 0.669351i \(-0.766572\pi\)
0.951148 + 0.308734i \(0.0999054\pi\)
\(492\) −19.2634 59.2867i −0.868462 2.67285i
\(493\) 0.515838 + 0.229666i 0.0232322 + 0.0103436i
\(494\) 16.4161 + 11.9270i 0.738596 + 0.536621i
\(495\) 6.35220 0.285510
\(496\) 0 0
\(497\) −5.45442 −0.244664
\(498\) 12.6757 + 9.20943i 0.568011 + 0.412684i
\(499\) −25.9574 11.5570i −1.16201 0.517362i −0.267130 0.963660i \(-0.586075\pi\)
−0.894884 + 0.446298i \(0.852742\pi\)
\(500\) 9.64554 + 29.6859i 0.431362 + 1.32759i
\(501\) −30.9859 + 53.6692i −1.38435 + 2.39776i
\(502\) −26.7606 46.3506i −1.19438 2.06873i
\(503\) 12.2304 13.5833i 0.545327 0.605647i −0.405984 0.913880i \(-0.633071\pi\)
0.951311 + 0.308233i \(0.0997377\pi\)
\(504\) 5.24359 16.1381i 0.233568 0.718848i
\(505\) −12.2782 13.6363i −0.546373 0.606808i
\(506\) −11.0092 + 4.90161i −0.489419 + 0.217903i
\(507\) 23.3924 + 4.97221i 1.03889 + 0.220824i
\(508\) −0.447274 + 4.25553i −0.0198446 + 0.188809i
\(509\) 1.08567 + 10.3295i 0.0481215 + 0.457845i 0.991877 + 0.127201i \(0.0405993\pi\)
−0.943756 + 0.330644i \(0.892734\pi\)
\(510\) 62.7945 13.3474i 2.78059 0.591032i
\(511\) 3.48875 2.53472i 0.154333 0.112130i
\(512\) 3.69272 2.68292i 0.163197 0.118569i
\(513\) 5.36915 1.14125i 0.237054 0.0503873i
\(514\) −3.70152 35.2176i −0.163267 1.55338i
\(515\) 1.45956 13.8868i 0.0643159 0.611924i
\(516\) 1.90594 + 0.405120i 0.0839042 + 0.0178344i
\(517\) 5.38631 2.39814i 0.236890 0.105470i
\(518\) −20.8491 23.1553i −0.916058 1.01739i
\(519\) 7.05096 21.7006i 0.309503 0.952552i
\(520\) −9.68888 + 10.7606i −0.424885 + 0.471883i
\(521\) −4.62522 8.01111i −0.202635 0.350973i 0.746742 0.665114i \(-0.231617\pi\)
−0.949376 + 0.314141i \(0.898284\pi\)
\(522\) −0.515537 + 0.892937i −0.0225645 + 0.0390828i
\(523\) 2.03184 + 6.25335i 0.0888461 + 0.273440i 0.985601 0.169087i \(-0.0540820\pi\)
−0.896755 + 0.442527i \(0.854082\pi\)
\(524\) −24.3598 10.8457i −1.06416 0.473796i
\(525\) −4.09367 2.97422i −0.178662 0.129806i
\(526\) 15.7047 0.684759
\(527\) 0 0
\(528\) −0.753909 −0.0328097
\(529\) −22.3875 16.2655i −0.973371 0.707195i
\(530\) 30.2013 + 13.4465i 1.31186 + 0.584077i
\(531\) 10.1774 + 31.3227i 0.441660 + 1.35929i
\(532\) 12.3504 21.3916i 0.535460 0.927443i
\(533\) 6.99044 + 12.1078i 0.302790 + 0.524447i
\(534\) 8.65534 9.61273i 0.374553 0.415983i
\(535\) −1.40837 + 4.33453i −0.0608893 + 0.187398i
\(536\) 9.87206 + 10.9640i 0.426408 + 0.473574i
\(537\) 26.2267 11.6769i 1.13176 0.503894i
\(538\) 23.7439 + 5.04692i 1.02367 + 0.217588i
\(539\) −0.340034 + 3.23520i −0.0146463 + 0.139350i
\(540\) 1.02760 + 9.77697i 0.0442209 + 0.420734i
\(541\) 2.15513 0.458087i 0.0926562 0.0196947i −0.161350 0.986897i \(-0.551585\pi\)
0.254006 + 0.967203i \(0.418252\pi\)
\(542\) −2.94425 + 2.13912i −0.126466 + 0.0918831i
\(543\) −30.7353 + 22.3305i −1.31898 + 0.958294i
\(544\) 22.1927 4.71720i 0.951503 0.202248i
\(545\) 3.07262 + 29.2341i 0.131617 + 1.25225i
\(546\) −1.86270 + 17.7224i −0.0797162 + 0.758449i
\(547\) 4.75717 + 1.01117i 0.203402 + 0.0432344i 0.308486 0.951229i \(-0.400178\pi\)
−0.105084 + 0.994463i \(0.533511\pi\)
\(548\) 50.0440 22.2810i 2.13777 0.951797i
\(549\) 18.1807 + 20.1917i 0.775933 + 0.861761i
\(550\) −0.649903 + 2.00019i −0.0277119 + 0.0852886i
\(551\) −0.400155 + 0.444417i −0.0170472 + 0.0189328i
\(552\) −27.6639 47.9152i −1.17745 2.03941i
\(553\) 3.62661 6.28147i 0.154219 0.267115i
\(554\) −8.62905 26.5575i −0.366613 1.12832i
\(555\) 48.9218 + 21.7814i 2.07661 + 0.924568i
\(556\) 19.7421 + 14.3435i 0.837251 + 0.608298i
\(557\) −11.0363 −0.467623 −0.233811 0.972282i \(-0.575120\pi\)
−0.233811 + 0.972282i \(0.575120\pi\)
\(558\) 0 0
\(559\) −0.437007 −0.0184834
\(560\) 1.30854 + 0.950708i 0.0552958 + 0.0401748i
\(561\) −7.46313 3.32280i −0.315094 0.140289i
\(562\) −15.3115 47.1238i −0.645875 1.98780i
\(563\) 5.59621 9.69292i 0.235852 0.408508i −0.723668 0.690148i \(-0.757545\pi\)
0.959520 + 0.281641i \(0.0908786\pi\)
\(564\) 33.9694 + 58.8366i 1.43037 + 2.47747i
\(565\) −18.4809 + 20.5251i −0.777498 + 0.863499i
\(566\) −0.491164 + 1.51165i −0.0206452 + 0.0635393i
\(567\) −7.91790 8.79372i −0.332521 0.369301i
\(568\) −9.50839 + 4.23341i −0.398963 + 0.177630i
\(569\) −45.8966 9.75563i −1.92409 0.408977i −0.999616 0.0277250i \(-0.991174\pi\)
−0.924471 0.381252i \(-0.875493\pi\)
\(570\) −7.10700 + 67.6185i −0.297679 + 2.83223i
\(571\) −2.13862 20.3476i −0.0894983 0.851520i −0.943527 0.331295i \(-0.892515\pi\)
0.854029 0.520225i \(-0.174152\pi\)
\(572\) 4.52355 0.961511i 0.189139 0.0402028i
\(573\) −4.65097 + 3.37913i −0.194297 + 0.141165i
\(574\) 22.0514 16.0213i 0.920407 0.668715i
\(575\) −8.65001 + 1.83862i −0.360731 + 0.0766756i
\(576\) 4.62337 + 43.9885i 0.192641 + 1.83285i
\(577\) −0.381356 + 3.62836i −0.0158761 + 0.151051i −0.999588 0.0287013i \(-0.990863\pi\)
0.983712 + 0.179752i \(0.0575295\pi\)
\(578\) −4.91538 1.04480i −0.204453 0.0434578i
\(579\) 59.6153 26.5425i 2.47753 1.10307i
\(580\) −0.716667 0.795939i −0.0297580 0.0330496i
\(581\) −1.32184 + 4.06822i −0.0548393 + 0.168778i
\(582\) 48.2507 53.5879i 2.00006 2.22129i
\(583\) −2.10348 3.64334i −0.0871173 0.150892i
\(584\) 4.11443 7.12641i 0.170256 0.294893i
\(585\) −5.07279 15.6124i −0.209734 0.645494i
\(586\) 18.9973 + 8.45815i 0.784772 + 0.349403i
\(587\) −18.5043 13.4442i −0.763755 0.554901i 0.136305 0.990667i \(-0.456477\pi\)
−0.900060 + 0.435766i \(0.856477\pi\)
\(588\) −37.4838 −1.54580
\(589\) 0 0
\(590\) −54.7914 −2.25573
\(591\) −12.7452 9.25996i −0.524269 0.380904i
\(592\) −3.11213 1.38561i −0.127908 0.0569482i
\(593\) −6.01340 18.5073i −0.246941 0.760005i −0.995311 0.0967243i \(-0.969163\pi\)
0.748371 0.663281i \(-0.230837\pi\)
\(594\) 1.00179 1.73515i 0.0411040 0.0711943i
\(595\) 8.76336 + 15.1786i 0.359263 + 0.622261i
\(596\) −14.1530 + 15.7185i −0.579731 + 0.643856i
\(597\) 3.59033 11.0499i 0.146942 0.452242i
\(598\) 20.8390 + 23.1440i 0.852169 + 0.946430i
\(599\) 32.1311 14.3057i 1.31284 0.584514i 0.373541 0.927614i \(-0.378143\pi\)
0.939299 + 0.343099i \(0.111477\pi\)
\(600\) −9.44469 2.00753i −0.385578 0.0819571i
\(601\) 0.615470 5.85580i 0.0251055 0.238863i −0.974772 0.223204i \(-0.928349\pi\)
0.999877 0.0156596i \(-0.00498480\pi\)
\(602\) 0.0890566 + 0.847317i 0.00362968 + 0.0345341i
\(603\) −16.3607 + 3.47758i −0.666261 + 0.141618i
\(604\) −14.8600 + 10.7964i −0.604645 + 0.439300i
\(605\) −21.1463 + 15.3637i −0.859719 + 0.624622i
\(606\) −42.1504 + 8.95935i −1.71224 + 0.363949i
\(607\) −4.06457 38.6718i −0.164976 1.56964i −0.693332 0.720618i \(-0.743858\pi\)
0.528356 0.849023i \(-0.322809\pi\)
\(608\) −2.51174 + 23.8976i −0.101864 + 0.969175i
\(609\) −0.513709 0.109192i −0.0208166 0.00442469i
\(610\) −41.2942 + 18.3854i −1.67195 + 0.744402i
\(611\) −10.1956 11.3233i −0.412469 0.458093i
\(612\) 15.5916 47.9859i 0.630252 1.93972i
\(613\) 30.5139 33.8892i 1.23245 1.36877i 0.326602 0.945162i \(-0.394096\pi\)
0.905845 0.423609i \(-0.139237\pi\)
\(614\) 36.1505 + 62.6144i 1.45891 + 2.52691i
\(615\) −23.4231 + 40.5699i −0.944509 + 1.63594i
\(616\) −1.11010 3.41654i −0.0447272 0.137656i
\(617\) −6.05359 2.69523i −0.243708 0.108506i 0.281248 0.959635i \(-0.409252\pi\)
−0.524956 + 0.851129i \(0.675918\pi\)
\(618\) −26.5288 19.2743i −1.06715 0.775328i
\(619\) −41.5360 −1.66947 −0.834736 0.550650i \(-0.814380\pi\)
−0.834736 + 0.550650i \(0.814380\pi\)
\(620\) 0 0
\(621\) 8.42469 0.338071
\(622\) 33.0689 + 24.0260i 1.32594 + 0.963353i
\(623\) 3.22617 + 1.43638i 0.129254 + 0.0575474i
\(624\) 0.602062 + 1.85296i 0.0241018 + 0.0741776i
\(625\) 14.8341 25.6934i 0.593364 1.02774i
\(626\) −25.0006 43.3022i −0.999223 1.73071i
\(627\) 5.78944 6.42982i 0.231208 0.256782i
\(628\) 8.21338 25.2782i 0.327750 1.00871i
\(629\) −24.7008 27.4330i −0.984884 1.09382i
\(630\) −29.2373 + 13.0173i −1.16484 + 0.518622i
\(631\) 10.9012 + 2.31712i 0.433969 + 0.0922429i 0.419716 0.907655i \(-0.362130\pi\)
0.0142529 + 0.999898i \(0.495463\pi\)
\(632\) 1.44675 13.7649i 0.0575486 0.547538i
\(633\) 4.94810 + 47.0780i 0.196669 + 1.87118i
\(634\) −2.29332 + 0.487460i −0.0910794 + 0.0193595i
\(635\) 2.60147 1.89008i 0.103236 0.0750056i
\(636\) 39.2177 28.4934i 1.55508 1.12983i
\(637\) 8.22302 1.74786i 0.325808 0.0692526i
\(638\) 0.0228170 + 0.217089i 0.000903334 + 0.00859464i
\(639\) 1.23343 11.7353i 0.0487936 0.464240i
\(640\) −46.6533 9.91646i −1.84413 0.391983i
\(641\) −16.0357 + 7.13957i −0.633374 + 0.281996i −0.698203 0.715900i \(-0.746017\pi\)
0.0648289 + 0.997896i \(0.479350\pi\)
\(642\) 7.16176 + 7.95394i 0.282652 + 0.313917i
\(643\) 0.678617 2.08857i 0.0267621 0.0823651i −0.936783 0.349910i \(-0.886212\pi\)
0.963545 + 0.267545i \(0.0862123\pi\)
\(644\) 25.3674 28.1734i 0.999617 1.11019i
\(645\) −0.732145 1.26811i −0.0288282 0.0499318i
\(646\) 23.4341 40.5891i 0.922003 1.59696i
\(647\) 10.0259 + 30.8566i 0.394160 + 1.21310i 0.929614 + 0.368535i \(0.120140\pi\)
−0.535454 + 0.844564i \(0.679860\pi\)
\(648\) −20.6280 9.18418i −0.810345 0.360789i
\(649\) 5.64084 + 4.09831i 0.221422 + 0.160873i
\(650\) 5.43508 0.213181
\(651\) 0 0
\(652\) −56.7370 −2.22199
\(653\) −13.3407 9.69256i −0.522061 0.379299i 0.295319 0.955399i \(-0.404574\pi\)
−0.817380 + 0.576099i \(0.804574\pi\)
\(654\) 63.0636 + 28.0777i 2.46598 + 1.09793i
\(655\) 6.19225 + 19.0578i 0.241951 + 0.744649i
\(656\) 1.49004 2.58083i 0.0581764 0.100764i
\(657\) 4.66457 + 8.07927i 0.181982 + 0.315202i
\(658\) −19.8772 + 22.0759i −0.774894 + 0.860607i
\(659\) −6.10043 + 18.7752i −0.237639 + 0.731377i 0.759122 + 0.650949i \(0.225629\pi\)
−0.996760 + 0.0804282i \(0.974371\pi\)
\(660\) 10.3687 + 11.5156i 0.403602 + 0.448245i
\(661\) 10.7623 4.79169i 0.418605 0.186375i −0.186615 0.982433i \(-0.559752\pi\)
0.605220 + 0.796058i \(0.293085\pi\)
\(662\) 60.2408 + 12.8046i 2.34132 + 0.497664i
\(663\) −2.20681 + 20.9964i −0.0857055 + 0.815433i
\(664\) 0.853219 + 8.11783i 0.0331113 + 0.315033i
\(665\) −18.1568 + 3.85935i −0.704091 + 0.149659i
\(666\) 54.5336 39.6210i 2.11313 1.53528i
\(667\) −0.742554 + 0.539497i −0.0287518 + 0.0208894i
\(668\) −79.2591 + 16.8470i −3.06663 + 0.651832i
\(669\) 1.65185 + 15.7163i 0.0638644 + 0.607629i
\(670\) 2.90866 27.6741i 0.112371 1.06914i
\(671\) 5.62649 + 1.19595i 0.217208 + 0.0461690i
\(672\) −19.2781 + 8.58318i −0.743671 + 0.331104i
\(673\) −33.7122 37.4412i −1.29951 1.44325i −0.827293 0.561770i \(-0.810120\pi\)
−0.472217 0.881482i \(-0.656546\pi\)
\(674\) −22.7764 + 70.0985i −0.877314 + 2.70009i
\(675\) 0.983796 1.09262i 0.0378663 0.0420548i
\(676\) 15.6348 + 27.0802i 0.601337 + 1.04155i
\(677\) −1.98998 + 3.44674i −0.0764810 + 0.132469i −0.901729 0.432301i \(-0.857702\pi\)
0.825248 + 0.564770i \(0.191035\pi\)
\(678\) 20.0433 + 61.6869i 0.769758 + 2.36907i
\(679\) 17.9849 + 8.00737i 0.690195 + 0.307295i
\(680\) 27.0574 + 19.6584i 1.03760 + 0.753864i
\(681\) −33.1770 −1.27134
\(682\) 0 0
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) 43.2314 + 31.4095i 1.65300 + 1.20097i
\(685\) −37.6075 16.7439i −1.43691 0.639753i
\(686\) −13.0604 40.1958i −0.498648 1.53468i
\(687\) 19.4238 33.6430i 0.741064 1.28356i
\(688\) 0.0465749 + 0.0806701i 0.00177565 + 0.00307552i
\(689\) −7.27477 + 8.07945i −0.277147 + 0.307803i
\(690\) −32.2468 + 99.2455i −1.22762 + 3.77821i
\(691\) 6.15301 + 6.83361i 0.234072 + 0.259963i 0.848725 0.528834i \(-0.177371\pi\)
−0.614653 + 0.788797i \(0.710704\pi\)
\(692\) 27.2550 12.1347i 1.03608 0.461293i
\(693\) 3.98369 + 0.846760i 0.151328 + 0.0321658i
\(694\) 0.752867 7.16305i 0.0285785 0.271906i
\(695\) −1.91687 18.2378i −0.0727110 0.691799i
\(696\) −0.980270 + 0.208363i −0.0371570 + 0.00789797i
\(697\) 26.1251 18.9810i 0.989560 0.718957i
\(698\) 41.1196 29.8751i 1.55640 1.13079i
\(699\) −32.4854 + 6.90499i −1.22871 + 0.261171i
\(700\) −0.691576 6.57991i −0.0261391 0.248697i
\(701\) 4.23908 40.3321i 0.160108 1.52332i −0.559434 0.828875i \(-0.688981\pi\)
0.719542 0.694449i \(-0.244352\pi\)
\(702\) −5.06468 1.07653i −0.191154 0.0406310i
\(703\) 35.7161 15.9018i 1.34706 0.599749i
\(704\) 6.26569 + 6.95876i 0.236147 + 0.262268i
\(705\) 15.7769 48.5564i 0.594193 1.82874i
\(706\) −7.61579 + 8.45820i −0.286624 + 0.318328i
\(707\) −5.88235 10.1885i −0.221229 0.383179i
\(708\) −40.1710 + 69.5782i −1.50972 + 2.61491i
\(709\) 11.5220 + 35.4612i 0.432719 + 1.33177i 0.895406 + 0.445250i \(0.146885\pi\)
−0.462687 + 0.886521i \(0.653115\pi\)
\(710\) 17.9336 + 7.98457i 0.673038 + 0.299656i
\(711\) 12.6946 + 9.22314i 0.476083 + 0.345895i
\(712\) 6.73883 0.252548
\(713\) 0 0
\(714\) 41.1599 1.54037
\(715\) −2.81161 2.04276i −0.105148 0.0763948i
\(716\) 34.2921 + 15.2678i 1.28156 + 0.570585i
\(717\) 18.4196 + 56.6897i 0.687893 + 2.11712i
\(718\) 0.416347 0.721134i 0.0155379 0.0269125i
\(719\) −9.28994 16.0906i −0.346456 0.600080i 0.639161 0.769073i \(-0.279282\pi\)
−0.985617 + 0.168993i \(0.945948\pi\)
\(720\) −2.34136 + 2.60035i −0.0872575 + 0.0969093i
\(721\) 2.76647 8.51433i 0.103029 0.317090i
\(722\) 3.87752 + 4.30642i 0.144306 + 0.160268i
\(723\) −57.4036 + 25.5577i −2.13486 + 0.950501i
\(724\) −48.5887 10.3278i −1.80578 0.383831i
\(725\) −0.0167435 + 0.159303i −0.000621836 + 0.00591638i
\(726\) 6.41630 + 61.0470i 0.238131 + 2.26567i
\(727\) −16.0193 + 3.40501i −0.594123 + 0.126285i −0.495153 0.868806i \(-0.664888\pi\)
−0.0989697 + 0.995090i \(0.531555\pi\)
\(728\) −7.51065 + 5.45681i −0.278363 + 0.202243i
\(729\) 28.0140 20.3534i 1.03756 0.753829i
\(730\) −15.1812 + 3.22686i −0.561881 + 0.119432i
\(731\) 0.105509 + 1.00385i 0.00390238 + 0.0371287i
\(732\) −6.92826 + 65.9179i −0.256076 + 2.43640i
\(733\) 1.12618 + 0.239377i 0.0415964 + 0.00884158i 0.228663 0.973506i \(-0.426565\pi\)
−0.187067 + 0.982347i \(0.559898\pi\)
\(734\) 61.9485 27.5812i 2.28656 1.01804i
\(735\) 18.8485 + 20.9334i 0.695237 + 0.772139i
\(736\) −11.3966 + 35.0751i −0.420084 + 1.29289i
\(737\) −2.36943 + 2.63151i −0.0872789 + 0.0969331i
\(738\) 29.4834 + 51.0668i 1.08530 + 1.87979i
\(739\) −10.3579 + 17.9404i −0.381022 + 0.659949i −0.991209 0.132309i \(-0.957761\pi\)
0.610187 + 0.792257i \(0.291094\pi\)
\(740\) 21.6374 + 66.5931i 0.795407 + 2.44801i
\(741\) −20.4266 9.09449i −0.750389 0.334095i
\(742\) 17.1479 + 12.4586i 0.629517 + 0.457371i
\(743\) 35.2367 1.29271 0.646354 0.763038i \(-0.276293\pi\)
0.646354 + 0.763038i \(0.276293\pi\)
\(744\) 0 0
\(745\) 15.8950 0.582348
\(746\) −33.0959 24.0456i −1.21173 0.880370i
\(747\) −8.45390 3.76392i −0.309312 0.137715i
\(748\) −3.30083 10.1589i −0.120690 0.371447i
\(749\) −1.46104 + 2.53060i −0.0533853 + 0.0924660i
\(750\) −27.5429 47.7058i −1.00573 1.74197i
\(751\) −28.8702 + 32.0636i −1.05349 + 1.17002i −0.0684559 + 0.997654i \(0.521807\pi\)
−0.985033 + 0.172364i \(0.944859\pi\)
\(752\) −1.00364 + 3.08888i −0.0365989 + 0.112640i
\(753\) 39.4629 + 43.8279i 1.43811 + 1.59718i
\(754\) 0.515340 0.229444i 0.0187676 0.00835586i
\(755\) 13.5017 + 2.86987i 0.491377 + 0.104445i
\(756\) −0.658843 + 6.26847i −0.0239619 + 0.227982i
\(757\) −2.85766 27.1888i −0.103863 0.988194i −0.915032 0.403382i \(-0.867835\pi\)
0.811168 0.584813i \(-0.198832\pi\)
\(758\) 5.55342 1.18042i 0.201709 0.0428746i
\(759\) 10.7433 7.80543i 0.389955 0.283319i
\(760\) −28.6563 + 20.8201i −1.03947 + 0.755223i
\(761\) 16.8163 3.57441i 0.609589 0.129572i 0.107235 0.994234i \(-0.465800\pi\)
0.502355 + 0.864662i \(0.332467\pi\)
\(762\) −0.789351 7.51017i −0.0285952 0.272065i
\(763\) −1.97000 + 18.7433i −0.0713189 + 0.678554i
\(764\) −7.35260 1.56284i −0.266008 0.0565417i
\(765\) −34.6386 + 15.4221i −1.25236 + 0.557587i
\(766\) 29.5188 + 32.7839i 1.06656 + 1.18453i
\(767\) 5.56812 17.1369i 0.201053 0.618778i
\(768\) −31.5169 + 35.0030i −1.13727 + 1.26306i
\(769\) −7.02837 12.1735i −0.253450 0.438987i 0.711024 0.703168i \(-0.248232\pi\)
−0.964473 + 0.264181i \(0.914899\pi\)
\(770\) −3.38775 + 5.86776i −0.122086 + 0.211459i
\(771\) 12.0581 + 37.1111i 0.434263 + 1.33652i
\(772\) 77.9486 + 34.7050i 2.80543 + 1.24906i
\(773\) −17.9900 13.0705i −0.647054 0.470112i 0.215212 0.976567i \(-0.430956\pi\)
−0.862266 + 0.506455i \(0.830956\pi\)
\(774\) −1.84315 −0.0662507
\(775\) 0 0
\(776\) 37.5668 1.34857
\(777\) 27.7771 + 20.1813i 0.996498 + 0.723998i
\(778\) −11.1116 4.94718i −0.398369 0.177365i
\(779\) 10.5686 + 32.5268i 0.378659 + 1.16539i
\(780\) 20.0228 34.6804i 0.716930 1.24176i
\(781\) −1.24906 2.16343i −0.0446948 0.0774136i
\(782\) 48.1330 53.4571i 1.72123 1.91162i
\(783\) 0.0471557 0.145130i 0.00168521 0.00518654i
\(784\) −1.19904 1.33166i −0.0428227 0.0475594i
\(785\) −18.2470 + 8.12411i −0.651265 + 0.289962i
\(786\) 46.0303 + 9.78404i 1.64185 + 0.348985i
\(787\) 3.34845 31.8583i 0.119359 1.13563i −0.756814 0.653630i \(-0.773245\pi\)
0.876173 0.481997i \(-0.160088\pi\)
\(788\) −2.15316 20.4859i −0.0767030 0.729780i
\(789\) −16.9273 + 3.59801i −0.602628 + 0.128093i
\(790\) −21.1192 + 15.3440i −0.751388 + 0.545915i
\(791\) −14.3261 + 10.4085i −0.509377 + 0.370084i
\(792\) 7.60176 1.61580i 0.270117 0.0574151i
\(793\) −1.55384 14.7838i −0.0551786 0.524990i
\(794\) −4.08247 + 38.8421i −0.144881 + 1.37845i
\(795\) −35.6329 7.57402i −1.26377 0.268623i
\(796\) 13.8782 6.17896i 0.491899 0.219008i
\(797\) −17.4304 19.3584i −0.617415 0.685709i 0.350622 0.936517i \(-0.385970\pi\)
−0.968037 + 0.250808i \(0.919304\pi\)
\(798\) −13.4707 + 41.4586i −0.476859 + 1.46762i
\(799\) −23.5493 + 26.1541i −0.833114 + 0.925267i
\(800\) 3.21812 + 5.57395i 0.113778 + 0.197069i
\(801\) −3.81994 + 6.61633i −0.134971 + 0.233776i
\(802\) −27.1247 83.4814i −0.957808 2.94783i
\(803\) 1.80429 + 0.803320i 0.0636719 + 0.0283485i
\(804\) −33.0100 23.9832i −1.16417 0.845822i
\(805\) −28.4897 −1.00413
\(806\) 0 0
\(807\) −26.7486 −0.941594
\(808\) −18.1621 13.1956i −0.638942 0.464218i
\(809\) 7.97472 + 3.55057i 0.280376 + 0.124831i 0.542107 0.840309i \(-0.317627\pi\)
−0.261731 + 0.965141i \(0.584293\pi\)
\(810\) 13.1605 + 40.5037i 0.462411 + 1.42316i
\(811\) 25.0392 43.3692i 0.879245 1.52290i 0.0270750 0.999633i \(-0.491381\pi\)
0.852170 0.523264i \(-0.175286\pi\)
\(812\) −0.343347 0.594695i −0.0120491 0.0208697i
\(813\) 2.68337 2.98018i 0.0941098 0.104520i
\(814\) 4.40984 13.5721i 0.154565 0.475701i
\(815\) 28.5299 + 31.6856i 0.999358 + 1.10990i
\(816\) 4.11107 1.83037i 0.143916 0.0640756i
\(817\) −1.04567 0.222263i −0.0365832 0.00777600i
\(818\) 0.120284 1.14442i 0.00420562 0.0400138i
\(819\) −1.10016 10.4673i −0.0384427 0.365758i
\(820\) −59.9140 + 12.7351i −2.09229 + 0.444730i
\(821\) −41.0844 + 29.8495i −1.43385 + 1.04176i −0.444572 + 0.895743i \(0.646644\pi\)
−0.989283 + 0.146013i \(0.953356\pi\)
\(822\) −78.2123 + 56.8246i −2.72797 + 1.98199i
\(823\) −6.19089 + 1.31592i −0.215801 + 0.0458699i −0.314543 0.949243i \(-0.601851\pi\)
0.0987423 + 0.995113i \(0.468518\pi\)
\(824\) −1.78569 16.9897i −0.0622076 0.591866i
\(825\) 0.242244 2.30480i 0.00843385 0.0802427i
\(826\) −34.3617 7.30380i −1.19560 0.254132i
\(827\) −3.37779 + 1.50389i −0.117457 + 0.0522953i −0.464624 0.885508i \(-0.653810\pi\)
0.347167 + 0.937803i \(0.387144\pi\)
\(828\) 54.8790 + 60.9493i 1.90718 + 2.11813i
\(829\) −8.04729 + 24.7670i −0.279494 + 0.860193i 0.708501 + 0.705709i \(0.249372\pi\)
−0.987995 + 0.154484i \(0.950628\pi\)
\(830\) 10.3014 11.4409i 0.357568 0.397120i
\(831\) 15.3852 + 26.6479i 0.533707 + 0.924407i
\(832\) 12.0995 20.9570i 0.419475 0.726553i
\(833\) −6.00033 18.4671i −0.207899 0.639848i
\(834\) −39.3425 17.5164i −1.36232 0.606543i
\(835\) 49.2635 + 35.7920i 1.70483 + 1.23863i
\(836\) 11.3130 0.391267
\(837\) 0 0
\(838\) 31.1747 1.07691
\(839\) −6.06196 4.40427i −0.209282 0.152052i 0.478207 0.878247i \(-0.341287\pi\)
−0.687489 + 0.726195i \(0.741287\pi\)
\(840\) −28.4177 12.6524i −0.980504 0.436548i
\(841\) −8.95636 27.5648i −0.308840 0.950511i
\(842\) 35.6687 61.7800i 1.22923 2.12908i
\(843\) 27.2996 + 47.2843i 0.940249 + 1.62856i
\(844\) −41.4157 + 45.9968i −1.42559 + 1.58328i
\(845\) 7.26150 22.3486i 0.249803 0.768815i
\(846\) −43.0016 47.7581i −1.47843 1.64196i
\(847\) −15.3096 + 6.81627i −0.526044 + 0.234210i
\(848\) 2.26677 + 0.481816i 0.0778411 + 0.0165456i
\(849\) 0.183076 1.74185i 0.00628315 0.0597801i
\(850\) −1.31222 12.4849i −0.0450087 0.428230i
\(851\) 58.6937 12.4757i 2.01199 0.427662i
\(852\) 23.2877 16.9195i 0.797822 0.579652i
\(853\) 35.2626 25.6198i 1.20737 0.877204i 0.212378 0.977187i \(-0.431879\pi\)
0.994989 + 0.0999836i \(0.0318790\pi\)
\(854\) −28.3479 + 6.02553i −0.970045 + 0.206189i
\(855\) −4.19758 39.9373i −0.143554 1.36583i
\(856\) −0.582848 + 5.54543i −0.0199213 + 0.189539i
\(857\) −38.3657 8.15487i −1.31055 0.278565i −0.500911 0.865499i \(-0.667002\pi\)
−0.809635 + 0.586933i \(0.800335\pi\)
\(858\) −7.45593 + 3.31959i −0.254541 + 0.113329i
\(859\) 12.1790 + 13.5262i 0.415544 + 0.461508i 0.914183 0.405302i \(-0.132833\pi\)
−0.498639 + 0.866809i \(0.666167\pi\)
\(860\) 0.591643 1.82089i 0.0201749 0.0620918i
\(861\) −20.0975 + 22.3205i −0.684920 + 0.760681i
\(862\) 13.9084 + 24.0900i 0.473721 + 0.820509i
\(863\) 22.4738 38.9258i 0.765018 1.32505i −0.175219 0.984530i \(-0.556063\pi\)
0.940237 0.340521i \(-0.110603\pi\)
\(864\) −1.89477 5.83151i −0.0644614 0.198392i
\(865\) −20.4819 9.11911i −0.696404 0.310059i
\(866\) −60.4700 43.9340i −2.05486 1.49294i
\(867\) 5.53740 0.188060
\(868\) 0 0
\(869\) 3.32196 0.112690
\(870\) 1.52919 + 1.11102i 0.0518442 + 0.0376670i
\(871\) 8.35992 + 3.72208i 0.283265 + 0.126118i
\(872\) 11.1133 + 34.2032i 0.376343 + 1.15827i
\(873\) −21.2949 + 36.8839i −0.720724 + 1.24833i
\(874\) 38.0922 + 65.9776i 1.28849 + 2.23173i
\(875\) 10.0632 11.1763i 0.340197 0.377827i
\(876\) −7.03257 + 21.6440i −0.237608 + 0.731283i
\(877\) −28.5391 31.6959i −0.963698 1.07029i −0.997486 0.0708657i \(-0.977424\pi\)
0.0337881 0.999429i \(-0.489243\pi\)
\(878\) 26.0725 11.6082i 0.879903 0.391758i
\(879\) −22.4140 4.76424i −0.756005 0.160694i
\(880\) −0.0774331 + 0.736727i −0.00261027 + 0.0248350i
\(881\) −0.932030 8.86768i −0.0314009 0.298760i −0.998940 0.0460372i \(-0.985341\pi\)
0.967539 0.252722i \(-0.0813259\pi\)
\(882\) 34.6820 7.37189i 1.16780 0.248225i
\(883\) 38.0791 27.6661i 1.28146 0.931038i 0.281867 0.959453i \(-0.409046\pi\)
0.999596 + 0.0284158i \(0.00904624\pi\)
\(884\) −22.3326 + 16.2256i −0.751126 + 0.545725i
\(885\) 59.0567 12.5529i 1.98517 0.421961i
\(886\) 1.13930 + 10.8397i 0.0382754 + 0.364166i
\(887\) −0.329951 + 3.13928i −0.0110787 + 0.105407i −0.998664 0.0516783i \(-0.983543\pi\)
0.987585 + 0.157085i \(0.0502096\pi\)
\(888\) 64.0858 + 13.6219i 2.15058 + 0.457120i
\(889\) 1.88343 0.838557i 0.0631682 0.0281243i
\(890\) −8.50466 9.44538i −0.285077 0.316610i
\(891\) 1.67473 5.15429i 0.0561056 0.172675i
\(892\) −13.8261 + 15.3554i −0.462931 + 0.514137i
\(893\) −18.6368 32.2799i −0.623657 1.08021i
\(894\) 18.6640 32.3270i 0.624217 1.08118i
\(895\) −8.71703 26.8283i −0.291378 0.896770i
\(896\) −27.9361 12.4379i −0.933279 0.415522i
\(897\) −27.7636 20.1714i −0.927000 0.673505i
\(898\) 36.8840 1.23083
\(899\) 0 0
\(900\) 14.3131 0.477105
\(901\) 20.3157 + 14.7602i 0.676815 + 0.491735i
\(902\) 11.4044 + 5.07756i 0.379724 + 0.169064i
\(903\) −0.290113 0.892875i −0.00965434 0.0297130i
\(904\) −16.8954 + 29.2637i −0.561932 + 0.973295i
\(905\) 18.6648 + 32.3284i 0.620439 + 1.07463i
\(906\) 21.6904 24.0897i 0.720616 0.800326i
\(907\) 8.33208 25.6435i 0.276662 0.851478i −0.712113 0.702065i \(-0.752262\pi\)
0.988775 0.149413i \(-0.0477384\pi\)
\(908\) −29.0267 32.2374i −0.963285 1.06984i
\(909\) 23.2510 10.3520i 0.771185 0.343354i
\(910\) 17.1272 + 3.64049i 0.567760 + 0.120681i
\(911\) 0.530798 5.05020i 0.0175861 0.167321i −0.982204 0.187818i \(-0.939858\pi\)
0.999790 + 0.0204976i \(0.00652506\pi\)
\(912\) 0.498189 + 4.73995i 0.0164967 + 0.156955i
\(913\) −1.91631 + 0.407324i −0.0634206 + 0.0134805i
\(914\) 8.50854 6.18181i 0.281437 0.204476i
\(915\) 40.2967 29.2773i 1.33217 0.967876i
\(916\) 49.6843 10.5607i 1.64161 0.348936i
\(917\) 1.34294 + 12.7772i 0.0443479 + 0.421942i
\(918\) −1.25011 + 11.8940i −0.0412598 + 0.392560i
\(919\) 48.2001 + 10.2453i 1.58998 + 0.337960i 0.916120 0.400903i \(-0.131304\pi\)
0.673856 + 0.738863i \(0.264637\pi\)
\(920\) −49.6645 + 22.1121i −1.63739 + 0.729013i
\(921\) −53.3098 59.2066i −1.75662 1.95092i
\(922\) 12.1157 37.2882i 0.399009 1.22802i
\(923\) −4.31979 + 4.79762i −0.142188 + 0.157915i
\(924\) 4.96754 + 8.60403i 0.163420 + 0.283052i
\(925\) 5.23597 9.06896i 0.172158 0.298186i
\(926\) −19.5578 60.1929i −0.642711 1.97806i
\(927\) 17.6931 + 7.87748i 0.581118 + 0.258730i
\(928\) 0.540441 + 0.392653i 0.0177408 + 0.0128895i
\(929\) 39.9606 1.31107 0.655533 0.755167i \(-0.272444\pi\)
0.655533 + 0.755167i \(0.272444\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) −35.1311 25.5243i −1.15076 0.836075i
\(933\) −41.1476 18.3201i −1.34711 0.599773i
\(934\) −16.3367 50.2791i −0.534552 1.64518i
\(935\) −4.01360 + 6.95176i −0.131259 + 0.227347i
\(936\) −10.0420 17.3932i −0.328232 0.568515i
\(937\) 30.1706 33.5079i 0.985631 1.09465i −0.00987411 0.999951i \(-0.503143\pi\)
0.995506 0.0947033i \(-0.0301903\pi\)
\(938\) 5.51313 16.9677i 0.180010 0.554014i
\(939\) 36.8674 + 40.9454i 1.20312 + 1.33620i
\(940\) 60.9846 27.1521i 1.98910 0.885604i
\(941\) 49.0955 + 10.4356i 1.60047 + 0.340190i 0.919795 0.392398i \(-0.128354\pi\)
0.680672 + 0.732588i \(0.261688\pi\)
\(942\) −4.90310 + 46.6499i −0.159752 + 1.51993i
\(943\) 5.48684 + 52.2038i 0.178676 + 1.69999i
\(944\) −3.75686 + 0.798545i −0.122275 + 0.0259904i
\(945\) 3.83202 2.78412i 0.124656 0.0905675i
\(946\) −0.315684 + 0.229358i −0.0102638 + 0.00745707i
\(947\) 29.6633 6.30512i 0.963926 0.204889i 0.301042 0.953611i \(-0.402666\pi\)
0.662884 + 0.748722i \(0.269332\pi\)
\(948\) 4.00115 + 38.0684i 0.129951 + 1.23640i
\(949\) 0.533519 5.07609i 0.0173188 0.164777i
\(950\) 13.0050 + 2.76430i 0.421938 + 0.0896857i
\(951\) 2.36017 1.05081i 0.0765337 0.0340750i
\(952\) 14.3482 + 15.9353i 0.465027 + 0.516465i
\(953\) 10.9631 33.7411i 0.355131 1.09298i −0.600803 0.799397i \(-0.705152\pi\)
0.955934 0.293583i \(-0.0948477\pi\)
\(954\) −30.6826 + 34.0765i −0.993387 + 1.10327i
\(955\) 2.82442 + 4.89204i 0.0913961 + 0.158303i
\(956\) −38.9689 + 67.4962i −1.26035 + 2.18298i
\(957\) −0.0743291 0.228761i −0.00240272 0.00739481i
\(958\) 19.0715 + 8.49116i 0.616171 + 0.274337i
\(959\) −21.3530 15.5139i −0.689524 0.500969i
\(960\) 81.0843 2.61698
\(961\) 0 0
\(962\) −36.8791 −1.18903
\(963\) −5.11422 3.71570i −0.164804 0.119737i
\(964\) −75.0567 33.4174i −2.41741 1.07630i
\(965\) −19.8145 60.9828i −0.637852 1.96311i
\(966\) −33.4527 + 57.9418i −1.07632 + 1.86425i
\(967\) −17.7222 30.6957i −0.569906 0.987107i −0.996575 0.0826987i \(-0.973646\pi\)
0.426668 0.904408i \(-0.359687\pi\)
\(968\) −21.3980 + 23.7649i −0.687757 + 0.763832i
\(969\) −15.9593 + 49.1176i −0.512686 + 1.57789i
\(970\) −47.4108 52.6550i −1.52227 1.69065i
\(971\) −36.6306 + 16.3090i −1.17553 + 0.523381i −0.899139 0.437663i \(-0.855806\pi\)
−0.276394 + 0.961044i \(0.589140\pi\)
\(972\) 72.6297 + 15.4379i 2.32960 + 0.495171i
\(973\) 1.22899 11.6931i 0.0393997 0.374863i
\(974\) −5.69784 54.2113i −0.182571 1.73704i
\(975\) −5.85818 + 1.24519i −0.187612 + 0.0398781i
\(976\) −2.56345 + 1.86246i −0.0820540 + 0.0596157i
\(977\) 31.2854 22.7302i 1.00091 0.727202i 0.0386252 0.999254i \(-0.487702\pi\)
0.962283 + 0.272052i \(0.0877022\pi\)
\(978\) 97.9415 20.8181i 3.13182 0.665690i
\(979\) 0.169065 + 1.60855i 0.00540335 + 0.0514095i
\(980\) −3.84991 + 36.6295i −0.122981 + 1.17009i
\(981\) −39.8810 8.47697i −1.27330 0.270649i
\(982\) −19.4506 + 8.65997i −0.620694 + 0.276351i
\(983\) 14.4396 + 16.0368i 0.460551 + 0.511493i 0.928027 0.372512i \(-0.121503\pi\)
−0.467477 + 0.884005i \(0.654837\pi\)
\(984\) −17.7109 + 54.5086i −0.564604 + 1.73767i
\(985\) −10.3580 + 11.5037i −0.330032 + 0.366538i
\(986\) −0.651478 1.12839i −0.0207473 0.0359354i
\(987\) 16.3669 28.3483i 0.520965 0.902338i
\(988\) −9.03438 27.8049i −0.287422 0.884593i
\(989\) −1.49890 0.667352i −0.0476621 0.0212206i
\(990\) −11.8585 8.61568i −0.376887 0.273824i
\(991\) −46.8764 −1.48908 −0.744538 0.667580i \(-0.767330\pi\)
−0.744538 + 0.667580i \(0.767330\pi\)
\(992\) 0 0
\(993\) −67.8639 −2.15360
\(994\) 10.1825 + 7.39800i 0.322968 + 0.234650i
\(995\) −10.4293 4.64342i −0.330631 0.147206i
\(996\) −6.97589 21.4696i −0.221039 0.680290i
\(997\) −22.2695 + 38.5718i −0.705281 + 1.22158i 0.261309 + 0.965255i \(0.415846\pi\)
−0.966590 + 0.256327i \(0.917488\pi\)
\(998\) 32.7830 + 56.7818i 1.03773 + 1.79740i
\(999\) −6.67543 + 7.41382i −0.211201 + 0.234563i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.l.732.1 16
31.2 even 5 961.2.g.n.448.2 16
31.3 odd 30 961.2.d.o.388.1 16
31.4 even 5 961.2.c.i.521.8 16
31.5 even 3 961.2.g.j.816.1 16
31.6 odd 6 961.2.d.o.374.1 16
31.7 even 15 961.2.a.j.1.8 8
31.8 even 5 961.2.g.m.844.2 16
31.9 even 15 961.2.g.n.547.2 16
31.10 even 15 961.2.g.m.846.2 16
31.11 odd 30 961.2.c.j.439.8 16
31.12 odd 30 961.2.d.p.628.4 16
31.13 odd 30 31.2.g.a.18.1 16
31.14 even 15 961.2.d.q.531.4 16
31.15 odd 10 961.2.g.k.338.1 16
31.16 even 5 961.2.g.j.338.1 16
31.17 odd 30 961.2.d.p.531.4 16
31.18 even 15 inner 961.2.g.l.235.1 16
31.19 even 15 961.2.d.q.628.4 16
31.20 even 15 961.2.c.i.439.8 16
31.21 odd 30 961.2.g.s.846.2 16
31.22 odd 30 961.2.g.t.547.2 16
31.23 odd 10 961.2.g.s.844.2 16
31.24 odd 30 961.2.a.i.1.8 8
31.25 even 3 961.2.d.n.374.1 16
31.26 odd 6 961.2.g.k.816.1 16
31.27 odd 10 961.2.c.j.521.8 16
31.28 even 15 961.2.d.n.388.1 16
31.29 odd 10 961.2.g.t.448.2 16
31.30 odd 2 31.2.g.a.19.1 yes 16
93.38 odd 30 8649.2.a.be.1.1 8
93.44 even 30 279.2.y.c.235.2 16
93.86 even 30 8649.2.a.bf.1.1 8
93.92 even 2 279.2.y.c.19.2 16
124.75 even 30 496.2.bg.c.49.2 16
124.123 even 2 496.2.bg.c.81.2 16
155.13 even 60 775.2.ck.a.49.4 32
155.44 odd 30 775.2.bl.a.576.2 16
155.92 even 4 775.2.ck.a.174.4 32
155.123 even 4 775.2.ck.a.174.1 32
155.137 even 60 775.2.ck.a.49.1 32
155.154 odd 2 775.2.bl.a.701.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 31.13 odd 30
31.2.g.a.19.1 yes 16 31.30 odd 2
279.2.y.c.19.2 16 93.92 even 2
279.2.y.c.235.2 16 93.44 even 30
496.2.bg.c.49.2 16 124.75 even 30
496.2.bg.c.81.2 16 124.123 even 2
775.2.bl.a.576.2 16 155.44 odd 30
775.2.bl.a.701.2 16 155.154 odd 2
775.2.ck.a.49.1 32 155.137 even 60
775.2.ck.a.49.4 32 155.13 even 60
775.2.ck.a.174.1 32 155.123 even 4
775.2.ck.a.174.4 32 155.92 even 4
961.2.a.i.1.8 8 31.24 odd 30
961.2.a.j.1.8 8 31.7 even 15
961.2.c.i.439.8 16 31.20 even 15
961.2.c.i.521.8 16 31.4 even 5
961.2.c.j.439.8 16 31.11 odd 30
961.2.c.j.521.8 16 31.27 odd 10
961.2.d.n.374.1 16 31.25 even 3
961.2.d.n.388.1 16 31.28 even 15
961.2.d.o.374.1 16 31.6 odd 6
961.2.d.o.388.1 16 31.3 odd 30
961.2.d.p.531.4 16 31.17 odd 30
961.2.d.p.628.4 16 31.12 odd 30
961.2.d.q.531.4 16 31.14 even 15
961.2.d.q.628.4 16 31.19 even 15
961.2.g.j.338.1 16 31.16 even 5
961.2.g.j.816.1 16 31.5 even 3
961.2.g.k.338.1 16 31.15 odd 10
961.2.g.k.816.1 16 31.26 odd 6
961.2.g.l.235.1 16 31.18 even 15 inner
961.2.g.l.732.1 16 1.1 even 1 trivial
961.2.g.m.844.2 16 31.8 even 5
961.2.g.m.846.2 16 31.10 even 15
961.2.g.n.448.2 16 31.2 even 5
961.2.g.n.547.2 16 31.9 even 15
961.2.g.s.844.2 16 31.23 odd 10
961.2.g.s.846.2 16 31.21 odd 30
961.2.g.t.448.2 16 31.29 odd 10
961.2.g.t.547.2 16 31.22 odd 30
8649.2.a.be.1.1 8 93.38 odd 30
8649.2.a.bf.1.1 8 93.86 even 30