Properties

Label 961.2.c.j.439.8
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,3,16,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.8
Root \(1.83925i\) of defining polynomial
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.j.521.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30753 q^{2} +(1.27136 - 2.20206i) q^{3} +3.32468 q^{4} +(1.24923 + 2.16373i) q^{5} +(2.93370 - 5.08132i) q^{6} +(-0.800939 + 1.38727i) q^{7} +3.05673 q^{8} +(-1.73272 - 3.00116i) q^{9} +(2.88263 + 4.99286i) q^{10} +(-0.366828 - 0.635365i) q^{11} +(4.22687 - 7.32116i) q^{12} +(0.947988 + 1.64196i) q^{13} +(-1.84819 + 3.20116i) q^{14} +6.35289 q^{15} +0.404135 q^{16} +(2.18962 - 3.79253i) q^{17} +(-3.99830 - 6.92527i) q^{18} +(2.31901 - 4.01665i) q^{19} +(4.15329 + 7.19371i) q^{20} +(2.03657 + 3.52744i) q^{21} +(-0.846466 - 1.46612i) q^{22} -7.11846 q^{23} +(3.88622 - 6.73112i) q^{24} +(-0.621150 + 1.07586i) q^{25} +(2.18751 + 3.78887i) q^{26} -1.18350 q^{27} +(-2.66287 + 4.61222i) q^{28} -0.128939 q^{29} +14.6595 q^{30} -5.18091 q^{32} -1.86549 q^{33} +(5.05261 - 8.75137i) q^{34} -4.00223 q^{35} +(-5.76075 - 9.97791i) q^{36} +(-4.21474 + 7.30014i) q^{37} +(5.35118 - 9.26852i) q^{38} +4.82094 q^{39} +(3.81856 + 6.61394i) q^{40} +(3.68699 + 6.38605i) q^{41} +(4.69943 + 8.13966i) q^{42} +(-0.115246 + 0.199612i) q^{43} +(-1.21959 - 2.11239i) q^{44} +(4.32914 - 7.49829i) q^{45} -16.4260 q^{46} -8.03652 q^{47} +(0.513802 - 0.889932i) q^{48} +(2.21699 + 3.83994i) q^{49} +(-1.43332 + 2.48258i) q^{50} +(-5.56760 - 9.64336i) q^{51} +(3.15176 + 5.45900i) q^{52} +(-2.86712 - 4.96600i) q^{53} -2.73096 q^{54} +(0.916506 - 1.58743i) q^{55} +(-2.44826 + 4.24051i) q^{56} +(-5.89661 - 10.2132i) q^{57} -0.297530 q^{58} +(-4.75186 + 8.23046i) q^{59} +21.1213 q^{60} -7.84044 q^{61} +5.55122 q^{63} -12.7634 q^{64} +(-2.36851 + 4.10238i) q^{65} -4.30466 q^{66} +(-2.41329 - 4.17994i) q^{67} +(7.27978 - 12.6090i) q^{68} +(-9.05014 + 15.6753i) q^{69} -9.23525 q^{70} +(1.70251 + 2.94883i) q^{71} +(-5.29647 - 9.17376i) q^{72} +(-1.34602 - 2.33138i) q^{73} +(-9.72562 + 16.8453i) q^{74} +(1.57941 + 2.73562i) q^{75} +(7.70998 - 13.3541i) q^{76} +1.17523 q^{77} +11.1245 q^{78} +(-2.26397 + 3.92132i) q^{79} +(0.504858 + 0.874439i) q^{80} +(3.69351 - 6.39735i) q^{81} +(8.50783 + 14.7360i) q^{82} +(-1.33517 - 2.31259i) q^{83} +(6.77093 + 11.7276i) q^{84} +10.9414 q^{85} +(-0.265933 + 0.460609i) q^{86} +(-0.163928 + 0.283932i) q^{87} +(-1.12130 - 1.94214i) q^{88} -2.20459 q^{89} +(9.98960 - 17.3025i) q^{90} -3.03712 q^{91} -23.6666 q^{92} -18.5445 q^{94} +11.5879 q^{95} +(-6.58682 + 11.4087i) q^{96} +12.2899 q^{97} +(5.11577 + 8.86077i) q^{98} +(-1.27122 + 2.20182i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 3 q^{3} + 16 q^{4} - 3 q^{5} + 11 q^{6} + 2 q^{7} - 18 q^{8} - 5 q^{9} + 13 q^{10} + 18 q^{11} + 8 q^{13} + 9 q^{14} - 36 q^{15} + 8 q^{16} + 14 q^{17} - 23 q^{18} + 6 q^{19} + 7 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30753 1.63167 0.815834 0.578286i \(-0.196278\pi\)
0.815834 + 0.578286i \(0.196278\pi\)
\(3\) 1.27136 2.20206i 0.734021 1.27136i −0.221130 0.975244i \(-0.570975\pi\)
0.955151 0.296118i \(-0.0956921\pi\)
\(4\) 3.32468 1.66234
\(5\) 1.24923 + 2.16373i 0.558673 + 0.967649i 0.997608 + 0.0691304i \(0.0220225\pi\)
−0.438935 + 0.898519i \(0.644644\pi\)
\(6\) 2.93370 5.08132i 1.19768 2.07444i
\(7\) −0.800939 + 1.38727i −0.302727 + 0.524338i −0.976753 0.214370i \(-0.931230\pi\)
0.674026 + 0.738708i \(0.264564\pi\)
\(8\) 3.05673 1.08072
\(9\) −1.73272 3.00116i −0.577574 1.00039i
\(10\) 2.88263 + 4.99286i 0.911568 + 1.57888i
\(11\) −0.366828 0.635365i −0.110603 0.191570i 0.805411 0.592717i \(-0.201945\pi\)
−0.916014 + 0.401147i \(0.868612\pi\)
\(12\) 4.22687 7.32116i 1.22019 2.11344i
\(13\) 0.947988 + 1.64196i 0.262925 + 0.455399i 0.967018 0.254709i \(-0.0819796\pi\)
−0.704093 + 0.710108i \(0.748646\pi\)
\(14\) −1.84819 + 3.20116i −0.493949 + 0.855545i
\(15\) 6.35289 1.64031
\(16\) 0.404135 0.101034
\(17\) 2.18962 3.79253i 0.531061 0.919824i −0.468282 0.883579i \(-0.655127\pi\)
0.999343 0.0362453i \(-0.0115398\pi\)
\(18\) −3.99830 6.92527i −0.942409 1.63230i
\(19\) 2.31901 4.01665i 0.532018 0.921482i −0.467283 0.884108i \(-0.654767\pi\)
0.999301 0.0373747i \(-0.0118995\pi\)
\(20\) 4.15329 + 7.19371i 0.928704 + 1.60856i
\(21\) 2.03657 + 3.52744i 0.444415 + 0.769750i
\(22\) −0.846466 1.46612i −0.180467 0.312578i
\(23\) −7.11846 −1.48430 −0.742151 0.670233i \(-0.766194\pi\)
−0.742151 + 0.670233i \(0.766194\pi\)
\(24\) 3.88622 6.73112i 0.793270 1.37398i
\(25\) −0.621150 + 1.07586i −0.124230 + 0.215173i
\(26\) 2.18751 + 3.78887i 0.429005 + 0.743059i
\(27\) −1.18350 −0.227765
\(28\) −2.66287 + 4.61222i −0.503234 + 0.871628i
\(29\) −0.128939 −0.0239434 −0.0119717 0.999928i \(-0.503811\pi\)
−0.0119717 + 0.999928i \(0.503811\pi\)
\(30\) 14.6595 2.67644
\(31\) 0 0
\(32\) −5.18091 −0.915865
\(33\) −1.86549 −0.324740
\(34\) 5.05261 8.75137i 0.866515 1.50085i
\(35\) −4.00223 −0.676500
\(36\) −5.76075 9.97791i −0.960125 1.66298i
\(37\) −4.21474 + 7.30014i −0.692899 + 1.20014i 0.277985 + 0.960585i \(0.410333\pi\)
−0.970884 + 0.239550i \(0.923000\pi\)
\(38\) 5.35118 9.26852i 0.868077 1.50355i
\(39\) 4.82094 0.771969
\(40\) 3.81856 + 6.61394i 0.603768 + 1.04576i
\(41\) 3.68699 + 6.38605i 0.575811 + 0.997334i 0.995953 + 0.0898756i \(0.0286470\pi\)
−0.420142 + 0.907458i \(0.638020\pi\)
\(42\) 4.69943 + 8.13966i 0.725138 + 1.25598i
\(43\) −0.115246 + 0.199612i −0.0175748 + 0.0304405i −0.874679 0.484703i \(-0.838928\pi\)
0.857104 + 0.515143i \(0.172261\pi\)
\(44\) −1.21959 2.11239i −0.183860 0.318454i
\(45\) 4.32914 7.49829i 0.645350 1.11778i
\(46\) −16.4260 −2.42189
\(47\) −8.03652 −1.17225 −0.586124 0.810222i \(-0.699347\pi\)
−0.586124 + 0.810222i \(0.699347\pi\)
\(48\) 0.513802 0.889932i 0.0741610 0.128451i
\(49\) 2.21699 + 3.83994i 0.316713 + 0.548563i
\(50\) −1.43332 + 2.48258i −0.202702 + 0.351090i
\(51\) −5.56760 9.64336i −0.779620 1.35034i
\(52\) 3.15176 + 5.45900i 0.437070 + 0.757027i
\(53\) −2.86712 4.96600i −0.393829 0.682132i 0.599122 0.800658i \(-0.295517\pi\)
−0.992951 + 0.118526i \(0.962183\pi\)
\(54\) −2.73096 −0.371636
\(55\) 0.916506 1.58743i 0.123582 0.214050i
\(56\) −2.44826 + 4.24051i −0.327162 + 0.566662i
\(57\) −5.89661 10.2132i −0.781025 1.35278i
\(58\) −0.297530 −0.0390676
\(59\) −4.75186 + 8.23046i −0.618639 + 1.07151i 0.371095 + 0.928595i \(0.378982\pi\)
−0.989734 + 0.142920i \(0.954351\pi\)
\(60\) 21.1213 2.72675
\(61\) −7.84044 −1.00387 −0.501933 0.864907i \(-0.667377\pi\)
−0.501933 + 0.864907i \(0.667377\pi\)
\(62\) 0 0
\(63\) 5.55122 0.699388
\(64\) −12.7634 −1.59542
\(65\) −2.36851 + 4.10238i −0.293777 + 0.508837i
\(66\) −4.30466 −0.529867
\(67\) −2.41329 4.17994i −0.294830 0.510661i 0.680115 0.733105i \(-0.261930\pi\)
−0.974945 + 0.222444i \(0.928596\pi\)
\(68\) 7.27978 12.6090i 0.882804 1.52906i
\(69\) −9.05014 + 15.6753i −1.08951 + 1.88709i
\(70\) −9.23525 −1.10382
\(71\) 1.70251 + 2.94883i 0.202051 + 0.349962i 0.949189 0.314707i \(-0.101906\pi\)
−0.747138 + 0.664668i \(0.768573\pi\)
\(72\) −5.29647 9.17376i −0.624195 1.08114i
\(73\) −1.34602 2.33138i −0.157540 0.272867i 0.776441 0.630190i \(-0.217023\pi\)
−0.933981 + 0.357323i \(0.883690\pi\)
\(74\) −9.72562 + 16.8453i −1.13058 + 1.95822i
\(75\) 1.57941 + 2.73562i 0.182375 + 0.315882i
\(76\) 7.70998 13.3541i 0.884395 1.53182i
\(77\) 1.17523 0.133930
\(78\) 11.1245 1.25960
\(79\) −2.26397 + 3.92132i −0.254717 + 0.441182i −0.964819 0.262917i \(-0.915316\pi\)
0.710102 + 0.704099i \(0.248649\pi\)
\(80\) 0.504858 + 0.874439i 0.0564448 + 0.0977653i
\(81\) 3.69351 6.39735i 0.410390 0.710817i
\(82\) 8.50783 + 14.7360i 0.939532 + 1.62732i
\(83\) −1.33517 2.31259i −0.146554 0.253840i 0.783397 0.621521i \(-0.213485\pi\)
−0.929952 + 0.367681i \(0.880152\pi\)
\(84\) 6.77093 + 11.7276i 0.738769 + 1.27959i
\(85\) 10.9414 1.18676
\(86\) −0.265933 + 0.460609i −0.0286763 + 0.0496688i
\(87\) −0.163928 + 0.283932i −0.0175749 + 0.0304407i
\(88\) −1.12130 1.94214i −0.119531 0.207033i
\(89\) −2.20459 −0.233686 −0.116843 0.993150i \(-0.537277\pi\)
−0.116843 + 0.993150i \(0.537277\pi\)
\(90\) 9.98960 17.3025i 1.05300 1.82384i
\(91\) −3.03712 −0.318377
\(92\) −23.6666 −2.46741
\(93\) 0 0
\(94\) −18.5445 −1.91272
\(95\) 11.5879 1.18890
\(96\) −6.58682 + 11.4087i −0.672264 + 1.16440i
\(97\) 12.2899 1.24785 0.623923 0.781485i \(-0.285538\pi\)
0.623923 + 0.781485i \(0.285538\pi\)
\(98\) 5.11577 + 8.86077i 0.516771 + 0.895073i
\(99\) −1.27122 + 2.20182i −0.127763 + 0.221292i
\(100\) −2.06512 + 3.57690i −0.206512 + 0.357690i
\(101\) 7.34432 0.730787 0.365394 0.930853i \(-0.380934\pi\)
0.365394 + 0.930853i \(0.380934\pi\)
\(102\) −12.8474 22.2523i −1.27208 2.20331i
\(103\) −2.79438 4.84000i −0.275338 0.476899i 0.694882 0.719123i \(-0.255456\pi\)
−0.970220 + 0.242224i \(0.922123\pi\)
\(104\) 2.89775 + 5.01904i 0.284147 + 0.492158i
\(105\) −5.08828 + 8.81316i −0.496565 + 0.860076i
\(106\) −6.61596 11.4592i −0.642598 1.11301i
\(107\) −0.912080 + 1.57977i −0.0881741 + 0.152722i −0.906739 0.421692i \(-0.861437\pi\)
0.818565 + 0.574414i \(0.194770\pi\)
\(108\) −3.93476 −0.378622
\(109\) 11.7653 1.12691 0.563455 0.826147i \(-0.309472\pi\)
0.563455 + 0.826147i \(0.309472\pi\)
\(110\) 2.11486 3.66305i 0.201644 0.349258i
\(111\) 10.7169 + 18.5622i 1.01720 + 1.76185i
\(112\) −0.323688 + 0.560644i −0.0305856 + 0.0529759i
\(113\) −5.52727 9.57351i −0.519962 0.900600i −0.999731 0.0232051i \(-0.992613\pi\)
0.479769 0.877395i \(-0.340720\pi\)
\(114\) −13.6066 23.5673i −1.27437 2.20728i
\(115\) −8.89259 15.4024i −0.829239 1.43628i
\(116\) −0.428681 −0.0398020
\(117\) 3.28520 5.69013i 0.303717 0.526053i
\(118\) −10.9650 + 18.9920i −1.00941 + 1.74836i
\(119\) 3.50750 + 6.07518i 0.321532 + 0.556911i
\(120\) 19.4191 1.77271
\(121\) 5.23087 9.06014i 0.475534 0.823649i
\(122\) −18.0920 −1.63797
\(123\) 18.7500 1.69063
\(124\) 0 0
\(125\) 9.38846 0.839730
\(126\) 12.8096 1.14117
\(127\) 0.643516 1.11460i 0.0571028 0.0989050i −0.836061 0.548637i \(-0.815147\pi\)
0.893164 + 0.449732i \(0.148480\pi\)
\(128\) −19.0900 −1.68733
\(129\) 0.293038 + 0.507557i 0.0258006 + 0.0446879i
\(130\) −5.46540 + 9.46635i −0.479347 + 0.830254i
\(131\) 4.01018 6.94583i 0.350371 0.606860i −0.635944 0.771736i \(-0.719389\pi\)
0.986314 + 0.164876i \(0.0527223\pi\)
\(132\) −6.20214 −0.539827
\(133\) 3.71478 + 6.43418i 0.322112 + 0.557914i
\(134\) −5.56873 9.64532i −0.481065 0.833229i
\(135\) −1.47846 2.56077i −0.127246 0.220396i
\(136\) 6.69308 11.5928i 0.573927 0.994071i
\(137\) 8.23838 + 14.2693i 0.703852 + 1.21911i 0.967104 + 0.254381i \(0.0818716\pi\)
−0.263252 + 0.964727i \(0.584795\pi\)
\(138\) −20.8834 + 36.1712i −1.77772 + 3.07910i
\(139\) 7.33982 0.622555 0.311278 0.950319i \(-0.399243\pi\)
0.311278 + 0.950319i \(0.399243\pi\)
\(140\) −13.3061 −1.12457
\(141\) −10.2173 + 17.6969i −0.860454 + 1.49035i
\(142\) 3.92858 + 6.80451i 0.329679 + 0.571022i
\(143\) 0.695498 1.20464i 0.0581604 0.100737i
\(144\) −0.700254 1.21288i −0.0583545 0.101073i
\(145\) −0.161074 0.278989i −0.0133765 0.0231688i
\(146\) −3.10598 5.37972i −0.257053 0.445229i
\(147\) 11.2744 0.929897
\(148\) −14.0127 + 24.2706i −1.15183 + 1.99503i
\(149\) 3.18096 5.50959i 0.260595 0.451363i −0.705805 0.708406i \(-0.749415\pi\)
0.966400 + 0.257043i \(0.0827480\pi\)
\(150\) 3.64454 + 6.31252i 0.297575 + 0.515415i
\(151\) −5.52473 −0.449596 −0.224798 0.974405i \(-0.572172\pi\)
−0.224798 + 0.974405i \(0.572172\pi\)
\(152\) 7.08861 12.2778i 0.574962 0.995863i
\(153\) −15.1760 −1.22691
\(154\) 2.71187 0.218529
\(155\) 0 0
\(156\) 16.0281 1.28327
\(157\) 7.99448 0.638029 0.319014 0.947750i \(-0.396648\pi\)
0.319014 + 0.947750i \(0.396648\pi\)
\(158\) −5.22418 + 9.04854i −0.415613 + 0.719863i
\(159\) −14.5806 −1.15632
\(160\) −6.47215 11.2101i −0.511669 0.886236i
\(161\) 5.70146 9.87521i 0.449338 0.778276i
\(162\) 8.52288 14.7621i 0.669621 1.15982i
\(163\) −17.0654 −1.33667 −0.668333 0.743863i \(-0.732992\pi\)
−0.668333 + 0.743863i \(0.732992\pi\)
\(164\) 12.2581 + 21.2316i 0.957194 + 1.65791i
\(165\) −2.33042 4.03641i −0.181423 0.314234i
\(166\) −3.08095 5.33636i −0.239128 0.414182i
\(167\) 12.1861 21.1070i 0.942989 1.63331i 0.183261 0.983064i \(-0.441335\pi\)
0.759728 0.650241i \(-0.225332\pi\)
\(168\) 6.22524 + 10.7824i 0.480288 + 0.831883i
\(169\) 4.70264 8.14521i 0.361741 0.626554i
\(170\) 25.2475 1.93639
\(171\) −16.0728 −1.22912
\(172\) −0.383156 + 0.663645i −0.0292153 + 0.0506025i
\(173\) −4.48680 7.77137i −0.341125 0.590846i 0.643517 0.765432i \(-0.277475\pi\)
−0.984642 + 0.174586i \(0.944141\pi\)
\(174\) −0.378269 + 0.655180i −0.0286765 + 0.0496691i
\(175\) −0.995006 1.72340i −0.0752154 0.130277i
\(176\) −0.148248 0.256774i −0.0111746 0.0193550i
\(177\) 12.0827 + 20.9278i 0.908189 + 1.57303i
\(178\) −5.08714 −0.381297
\(179\) 5.64526 9.77788i 0.421946 0.730833i −0.574183 0.818727i \(-0.694680\pi\)
0.996130 + 0.0878940i \(0.0280137\pi\)
\(180\) 14.3930 24.9294i 1.07279 1.85813i
\(181\) 7.47052 + 12.9393i 0.555279 + 0.961772i 0.997882 + 0.0650542i \(0.0207220\pi\)
−0.442602 + 0.896718i \(0.645945\pi\)
\(182\) −7.00824 −0.519485
\(183\) −9.96803 + 17.2651i −0.736858 + 1.27628i
\(184\) −21.7592 −1.60411
\(185\) −21.0607 −1.54841
\(186\) 0 0
\(187\) −3.21286 −0.234947
\(188\) −26.7189 −1.94867
\(189\) 0.947911 1.64183i 0.0689504 0.119426i
\(190\) 26.7394 1.93988
\(191\) −1.13046 1.95802i −0.0817975 0.141677i 0.822225 0.569163i \(-0.192733\pi\)
−0.904022 + 0.427486i \(0.859399\pi\)
\(192\) −16.2269 + 28.1057i −1.17107 + 2.02836i
\(193\) −12.8321 + 22.2259i −0.923677 + 1.59985i −0.130001 + 0.991514i \(0.541498\pi\)
−0.793676 + 0.608341i \(0.791835\pi\)
\(194\) 28.3592 2.03607
\(195\) 6.02246 + 10.4312i 0.431278 + 0.746995i
\(196\) 7.37079 + 12.7666i 0.526485 + 0.911899i
\(197\) 3.09786 + 5.36564i 0.220713 + 0.382286i 0.955025 0.296526i \(-0.0958282\pi\)
−0.734312 + 0.678812i \(0.762495\pi\)
\(198\) −2.93338 + 5.08077i −0.208466 + 0.361074i
\(199\) 2.28467 + 3.95716i 0.161956 + 0.280515i 0.935570 0.353141i \(-0.114887\pi\)
−0.773614 + 0.633657i \(0.781553\pi\)
\(200\) −1.89869 + 3.28863i −0.134258 + 0.232541i
\(201\) −12.2727 −0.865647
\(202\) 16.9472 1.19240
\(203\) 0.103272 0.178873i 0.00724829 0.0125544i
\(204\) −18.5105 32.0611i −1.29599 2.24473i
\(205\) −9.21179 + 15.9553i −0.643380 + 1.11437i
\(206\) −6.44810 11.1684i −0.449260 0.778141i
\(207\) 12.3343 + 21.3637i 0.857295 + 1.48488i
\(208\) 0.383115 + 0.663575i 0.0265643 + 0.0460107i
\(209\) −3.40272 −0.235371
\(210\) −11.7413 + 20.3366i −0.810230 + 1.40336i
\(211\) 9.30839 16.1226i 0.640816 1.10993i −0.344435 0.938810i \(-0.611930\pi\)
0.985251 0.171115i \(-0.0547371\pi\)
\(212\) −9.53225 16.5103i −0.654678 1.13394i
\(213\) 8.65802 0.593238
\(214\) −2.10465 + 3.64536i −0.143871 + 0.249192i
\(215\) −0.575874 −0.0392743
\(216\) −3.61764 −0.246149
\(217\) 0 0
\(218\) 27.1487 1.83874
\(219\) −6.84513 −0.462551
\(220\) 3.04709 5.27771i 0.205435 0.355823i
\(221\) 8.30293 0.558516
\(222\) 24.7296 + 42.8329i 1.65974 + 2.87475i
\(223\) −3.10748 + 5.38231i −0.208092 + 0.360426i −0.951113 0.308842i \(-0.900059\pi\)
0.743021 + 0.669268i \(0.233392\pi\)
\(224\) 4.14960 7.18731i 0.277257 0.480223i
\(225\) 4.30512 0.287008
\(226\) −12.7543 22.0911i −0.848405 1.46948i
\(227\) 6.52390 + 11.2997i 0.433006 + 0.749989i 0.997131 0.0757009i \(-0.0241194\pi\)
−0.564124 + 0.825690i \(0.690786\pi\)
\(228\) −19.6043 33.9557i −1.29833 2.24877i
\(229\) −7.63897 + 13.2311i −0.504797 + 0.874334i 0.495187 + 0.868786i \(0.335099\pi\)
−0.999985 + 0.00554817i \(0.998234\pi\)
\(230\) −20.5199 35.5415i −1.35304 2.34354i
\(231\) 1.49414 2.58793i 0.0983073 0.170273i
\(232\) −0.394132 −0.0258760
\(233\) 13.0613 0.855671 0.427836 0.903857i \(-0.359276\pi\)
0.427836 + 0.903857i \(0.359276\pi\)
\(234\) 7.58069 13.1301i 0.495565 0.858344i
\(235\) −10.0395 17.3889i −0.654902 1.13432i
\(236\) −15.7984 + 27.3636i −1.02839 + 1.78122i
\(237\) 5.75666 + 9.97082i 0.373935 + 0.647675i
\(238\) 8.09366 + 14.0186i 0.524634 + 0.908693i
\(239\) 11.7211 + 20.3016i 0.758176 + 1.31320i 0.943780 + 0.330574i \(0.107242\pi\)
−0.185604 + 0.982625i \(0.559424\pi\)
\(240\) 2.56743 0.165727
\(241\) −12.3560 + 21.4013i −0.795923 + 1.37858i 0.126329 + 0.991988i \(0.459681\pi\)
−0.922252 + 0.386590i \(0.873653\pi\)
\(242\) 12.0704 20.9065i 0.775914 1.34392i
\(243\) −11.1668 19.3415i −0.716353 1.24076i
\(244\) −26.0669 −1.66876
\(245\) −5.53907 + 9.59394i −0.353878 + 0.612935i
\(246\) 43.2661 2.75855
\(247\) 8.79358 0.559522
\(248\) 0 0
\(249\) −6.78996 −0.430296
\(250\) 21.6641 1.37016
\(251\) 11.5971 20.0867i 0.732001 1.26786i −0.224026 0.974583i \(-0.571920\pi\)
0.956027 0.293279i \(-0.0947466\pi\)
\(252\) 18.4560 1.16262
\(253\) 2.61125 + 4.52282i 0.164168 + 0.284348i
\(254\) 1.48493 2.57198i 0.0931729 0.161380i
\(255\) 13.9104 24.0936i 0.871104 1.50880i
\(256\) −18.5239 −1.15774
\(257\) −7.67305 13.2901i −0.478632 0.829015i 0.521068 0.853515i \(-0.325534\pi\)
−0.999700 + 0.0245003i \(0.992201\pi\)
\(258\) 0.676194 + 1.17120i 0.0420980 + 0.0729159i
\(259\) −6.75150 11.6939i −0.419518 0.726626i
\(260\) −7.87453 + 13.6391i −0.488358 + 0.845861i
\(261\) 0.223416 + 0.386967i 0.0138291 + 0.0239527i
\(262\) 9.25359 16.0277i 0.571689 0.990194i
\(263\) −6.80588 −0.419668 −0.209834 0.977737i \(-0.567292\pi\)
−0.209834 + 0.977737i \(0.567292\pi\)
\(264\) −5.70230 −0.350952
\(265\) 7.16338 12.4073i 0.440043 0.762177i
\(266\) 8.57195 + 14.8470i 0.525580 + 0.910331i
\(267\) −2.80283 + 4.85464i −0.171530 + 0.297099i
\(268\) −8.02341 13.8970i −0.490108 0.848892i
\(269\) −5.25982 9.11028i −0.320697 0.555464i 0.659935 0.751323i \(-0.270584\pi\)
−0.980632 + 0.195859i \(0.937250\pi\)
\(270\) −3.41159 5.90905i −0.207623 0.359613i
\(271\) −1.57714 −0.0958044 −0.0479022 0.998852i \(-0.515254\pi\)
−0.0479022 + 0.998852i \(0.515254\pi\)
\(272\) 0.884903 1.53270i 0.0536551 0.0929334i
\(273\) −3.86128 + 6.68794i −0.233695 + 0.404772i
\(274\) 19.0103 + 32.9268i 1.14845 + 1.98918i
\(275\) 0.911421 0.0549608
\(276\) −30.0888 + 52.1154i −1.81113 + 3.13698i
\(277\) 12.1014 0.727100 0.363550 0.931575i \(-0.381565\pi\)
0.363550 + 0.931575i \(0.381565\pi\)
\(278\) 16.9368 1.01580
\(279\) 0 0
\(280\) −12.2337 −0.731106
\(281\) −21.4727 −1.28096 −0.640478 0.767976i \(-0.721264\pi\)
−0.640478 + 0.767976i \(0.721264\pi\)
\(282\) −23.5768 + 40.8362i −1.40398 + 2.43176i
\(283\) −0.688807 −0.0409453 −0.0204726 0.999790i \(-0.506517\pi\)
−0.0204726 + 0.999790i \(0.506517\pi\)
\(284\) 5.66030 + 9.80392i 0.335877 + 0.581756i
\(285\) 14.7324 25.5173i 0.872675 1.51152i
\(286\) 1.60488 2.77973i 0.0948985 0.164369i
\(287\) −11.8122 −0.697253
\(288\) 8.97709 + 15.5488i 0.528980 + 0.916220i
\(289\) −1.08887 1.88598i −0.0640512 0.110940i
\(290\) −0.371684 0.643775i −0.0218260 0.0378038i
\(291\) 15.6249 27.0631i 0.915946 1.58647i
\(292\) −4.47509 7.75109i −0.261885 0.453598i
\(293\) −4.50594 + 7.80452i −0.263240 + 0.455945i −0.967101 0.254393i \(-0.918124\pi\)
0.703861 + 0.710338i \(0.251458\pi\)
\(294\) 26.0160 1.51728
\(295\) −23.7447 −1.38247
\(296\) −12.8833 + 22.3146i −0.748828 + 1.29701i
\(297\) 0.434141 + 0.751954i 0.0251914 + 0.0436328i
\(298\) 7.34016 12.7135i 0.425204 0.736475i
\(299\) −6.74822 11.6883i −0.390259 0.675949i
\(300\) 5.25104 + 9.09507i 0.303169 + 0.525104i
\(301\) −0.184610 0.319754i −0.0106407 0.0184303i
\(302\) −12.7485 −0.733592
\(303\) 9.33729 16.1727i 0.536413 0.929095i
\(304\) 0.937195 1.62327i 0.0537518 0.0931009i
\(305\) −9.79451 16.9646i −0.560832 0.971389i
\(306\) −35.0191 −2.00191
\(307\) 15.6663 27.1349i 0.894124 1.54867i 0.0592398 0.998244i \(-0.481132\pi\)
0.834885 0.550425i \(-0.185534\pi\)
\(308\) 3.90726 0.222637
\(309\) −14.2107 −0.808416
\(310\) 0 0
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) 14.7363 0.834281
\(313\) 10.8344 18.7656i 0.612394 1.06070i −0.378442 0.925625i \(-0.623540\pi\)
0.990836 0.135072i \(-0.0431266\pi\)
\(314\) 18.4475 1.04105
\(315\) 6.93475 + 12.0113i 0.390729 + 0.676762i
\(316\) −7.52698 + 13.0371i −0.423426 + 0.733395i
\(317\) −0.508023 + 0.879922i −0.0285334 + 0.0494213i −0.879940 0.475086i \(-0.842417\pi\)
0.851406 + 0.524507i \(0.175750\pi\)
\(318\) −33.6451 −1.88672
\(319\) 0.0472985 + 0.0819234i 0.00264821 + 0.00458683i
\(320\) −15.9444 27.6165i −0.891318 1.54381i
\(321\) 2.31917 + 4.01692i 0.129443 + 0.224202i
\(322\) 13.1563 22.7873i 0.733170 1.26989i
\(323\) −10.1555 17.5899i −0.565068 0.978726i
\(324\) 12.2797 21.2691i 0.682208 1.18162i
\(325\) −2.35537 −0.130652
\(326\) −39.3789 −2.18099
\(327\) 14.9579 25.9079i 0.827176 1.43271i
\(328\) 11.2701 + 19.5205i 0.622290 + 1.07784i
\(329\) 6.43677 11.1488i 0.354870 0.614654i
\(330\) −5.37751 9.31412i −0.296022 0.512725i
\(331\) −13.3447 23.1137i −0.733492 1.27045i −0.955382 0.295374i \(-0.904556\pi\)
0.221889 0.975072i \(-0.428778\pi\)
\(332\) −4.43903 7.68862i −0.243623 0.421968i
\(333\) 29.2119 1.60080
\(334\) 28.1198 48.7049i 1.53864 2.66501i
\(335\) 6.02951 10.4434i 0.329427 0.570584i
\(336\) 0.823049 + 1.42556i 0.0449010 + 0.0777708i
\(337\) 31.9415 1.73997 0.869983 0.493081i \(-0.164129\pi\)
0.869983 + 0.493081i \(0.164129\pi\)
\(338\) 10.8515 18.7953i 0.590242 1.02233i
\(339\) −28.1086 −1.52665
\(340\) 36.3765 1.97279
\(341\) 0 0
\(342\) −37.0885 −2.00552
\(343\) −18.3159 −0.988963
\(344\) −0.352276 + 0.610160i −0.0189934 + 0.0328976i
\(345\) −45.2228 −2.43472
\(346\) −10.3534 17.9326i −0.556603 0.964065i
\(347\) −1.56066 + 2.70314i −0.0837804 + 0.145112i −0.904871 0.425686i \(-0.860033\pi\)
0.821090 + 0.570798i \(0.193366\pi\)
\(348\) −0.545009 + 0.943982i −0.0292155 + 0.0506028i
\(349\) −22.0265 −1.17905 −0.589525 0.807750i \(-0.700685\pi\)
−0.589525 + 0.807750i \(0.700685\pi\)
\(350\) −2.29600 3.97679i −0.122727 0.212569i
\(351\) −1.12194 1.94326i −0.0598849 0.103724i
\(352\) 1.90051 + 3.29177i 0.101297 + 0.175452i
\(353\) −2.46620 + 4.27158i −0.131262 + 0.227353i −0.924163 0.381997i \(-0.875236\pi\)
0.792901 + 0.609350i \(0.208570\pi\)
\(354\) 27.8811 + 48.2914i 1.48186 + 2.56666i
\(355\) −4.25365 + 7.36754i −0.225760 + 0.391028i
\(356\) −7.32954 −0.388465
\(357\) 17.8372 0.944046
\(358\) 13.0266 22.5627i 0.688476 1.19248i
\(359\) 0.180430 + 0.312514i 0.00952273 + 0.0164938i 0.870747 0.491730i \(-0.163635\pi\)
−0.861225 + 0.508224i \(0.830302\pi\)
\(360\) 13.2330 22.9203i 0.697441 1.20800i
\(361\) −1.25564 2.17484i −0.0660865 0.114465i
\(362\) 17.2384 + 29.8578i 0.906032 + 1.56929i
\(363\) −13.3007 23.0374i −0.698104 1.20915i
\(364\) −10.0975 −0.529251
\(365\) 3.36298 5.82486i 0.176027 0.304887i
\(366\) −23.0015 + 39.8398i −1.20231 + 2.08246i
\(367\) 14.6935 + 25.4498i 0.766992 + 1.32847i 0.939187 + 0.343406i \(0.111581\pi\)
−0.172195 + 0.985063i \(0.555086\pi\)
\(368\) −2.87682 −0.149965
\(369\) 12.7771 22.1305i 0.665147 1.15207i
\(370\) −48.5981 −2.52650
\(371\) 9.18555 0.476890
\(372\) 0 0
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) −7.41376 −0.383356
\(375\) 11.9361 20.6740i 0.616379 1.06760i
\(376\) −24.5655 −1.26687
\(377\) −0.122233 0.211713i −0.00629530 0.0109038i
\(378\) 2.18733 3.78857i 0.112504 0.194863i
\(379\) 1.23021 2.13079i 0.0631917 0.109451i −0.832699 0.553726i \(-0.813205\pi\)
0.895890 + 0.444275i \(0.146539\pi\)
\(380\) 38.5261 1.97635
\(381\) −1.63628 2.83413i −0.0838294 0.145197i
\(382\) −2.60858 4.51819i −0.133466 0.231171i
\(383\) 9.55896 + 16.5566i 0.488440 + 0.846003i 0.999912 0.0132974i \(-0.00423282\pi\)
−0.511472 + 0.859300i \(0.670899\pi\)
\(384\) −24.2703 + 42.0374i −1.23854 + 2.14521i
\(385\) 1.46813 + 2.54288i 0.0748229 + 0.129597i
\(386\) −29.6105 + 51.2868i −1.50713 + 2.61043i
\(387\) 0.798756 0.0406031
\(388\) 40.8599 2.07435
\(389\) −2.63553 + 4.56487i −0.133627 + 0.231448i −0.925072 0.379792i \(-0.875996\pi\)
0.791445 + 0.611240i \(0.209329\pi\)
\(390\) 13.8970 + 24.0703i 0.703702 + 1.21885i
\(391\) −15.5867 + 26.9970i −0.788255 + 1.36530i
\(392\) 6.77676 + 11.7377i 0.342278 + 0.592843i
\(393\) −10.1968 17.6613i −0.514359 0.890896i
\(394\) 7.14838 + 12.3814i 0.360130 + 0.623764i
\(395\) −11.3129 −0.569213
\(396\) −4.22641 + 7.32036i −0.212385 + 0.367862i
\(397\) −8.46275 + 14.6579i −0.424733 + 0.735660i −0.996395 0.0848295i \(-0.972965\pi\)
0.571662 + 0.820489i \(0.306299\pi\)
\(398\) 5.27193 + 9.13124i 0.264258 + 0.457708i
\(399\) 18.8913 0.945748
\(400\) −0.251029 + 0.434794i −0.0125514 + 0.0217397i
\(401\) 38.0397 1.89961 0.949805 0.312843i \(-0.101281\pi\)
0.949805 + 0.312843i \(0.101281\pi\)
\(402\) −28.3195 −1.41245
\(403\) 0 0
\(404\) 24.4175 1.21482
\(405\) 18.4562 0.917095
\(406\) 0.238304 0.412754i 0.0118268 0.0204846i
\(407\) 6.18434 0.306546
\(408\) −17.0187 29.4772i −0.842550 1.45934i
\(409\) −0.249342 + 0.431873i −0.0123292 + 0.0213547i −0.872124 0.489285i \(-0.837258\pi\)
0.859795 + 0.510639i \(0.170591\pi\)
\(410\) −21.2565 + 36.8173i −1.04978 + 1.81828i
\(411\) 41.8958 2.06657
\(412\) −9.29040 16.0915i −0.457705 0.792769i
\(413\) −7.61190 13.1842i −0.374557 0.648752i
\(414\) 28.4618 + 49.2972i 1.39882 + 2.42283i
\(415\) 3.33588 5.77791i 0.163752 0.283627i
\(416\) −4.91144 8.50687i −0.240803 0.417084i
\(417\) 9.33157 16.1627i 0.456969 0.791493i
\(418\) −7.85186 −0.384047
\(419\) 13.5100 0.660007 0.330003 0.943980i \(-0.392950\pi\)
0.330003 + 0.943980i \(0.392950\pi\)
\(420\) −16.9169 + 29.3009i −0.825460 + 1.42974i
\(421\) 15.4576 + 26.7733i 0.753355 + 1.30485i 0.946188 + 0.323618i \(0.104899\pi\)
−0.192833 + 0.981232i \(0.561767\pi\)
\(422\) 21.4793 37.2033i 1.04560 1.81103i
\(423\) 13.9251 + 24.1189i 0.677060 + 1.17270i
\(424\) −8.76402 15.1797i −0.425618 0.737193i
\(425\) 2.72016 + 4.71146i 0.131947 + 0.228539i
\(426\) 19.9786 0.967967
\(427\) 6.27971 10.8768i 0.303897 0.526364i
\(428\) −3.03237 + 5.25223i −0.146575 + 0.253876i
\(429\) −1.76846 3.06306i −0.0853820 0.147886i
\(430\) −1.32885 −0.0640826
\(431\) 6.02740 10.4398i 0.290330 0.502865i −0.683558 0.729896i \(-0.739568\pi\)
0.973888 + 0.227031i \(0.0729018\pi\)
\(432\) −0.478294 −0.0230119
\(433\) −32.3919 −1.55665 −0.778327 0.627860i \(-0.783931\pi\)
−0.778327 + 0.627860i \(0.783931\pi\)
\(434\) 0 0
\(435\) −0.819136 −0.0392745
\(436\) 39.1158 1.87331
\(437\) −16.5078 + 28.5924i −0.789675 + 1.36776i
\(438\) −15.7953 −0.754730
\(439\) −6.18408 10.7111i −0.295150 0.511215i 0.679870 0.733333i \(-0.262036\pi\)
−0.975020 + 0.222118i \(0.928703\pi\)
\(440\) 2.80151 4.85236i 0.133557 0.231327i
\(441\) 7.68287 13.3071i 0.365851 0.633672i
\(442\) 19.1592 0.911312
\(443\) 2.36170 + 4.09059i 0.112208 + 0.194350i 0.916660 0.399667i \(-0.130874\pi\)
−0.804452 + 0.594017i \(0.797541\pi\)
\(444\) 35.6303 + 61.7135i 1.69094 + 2.92879i
\(445\) −2.75404 4.77013i −0.130554 0.226126i
\(446\) −7.17059 + 12.4198i −0.339537 + 0.588095i
\(447\) −8.08831 14.0094i −0.382564 0.662620i
\(448\) 10.2227 17.7062i 0.482976 0.836540i
\(449\) −15.9842 −0.754341 −0.377170 0.926144i \(-0.623103\pi\)
−0.377170 + 0.926144i \(0.623103\pi\)
\(450\) 9.93418 0.468302
\(451\) 2.70498 4.68517i 0.127373 0.220616i
\(452\) −18.3764 31.8288i −0.864353 1.49710i
\(453\) −7.02394 + 12.1658i −0.330013 + 0.571600i
\(454\) 15.0541 + 26.0744i 0.706523 + 1.22373i
\(455\) −3.79406 6.57151i −0.177868 0.308077i
\(456\) −18.0244 31.2191i −0.844068 1.46197i
\(457\) 4.55775 0.213203 0.106601 0.994302i \(-0.466003\pi\)
0.106601 + 0.994302i \(0.466003\pi\)
\(458\) −17.6271 + 30.5311i −0.823661 + 1.42662i
\(459\) −2.59141 + 4.48846i −0.120957 + 0.209503i
\(460\) −29.5650 51.2081i −1.37848 2.38759i
\(461\) −16.9910 −0.791349 −0.395675 0.918391i \(-0.629489\pi\)
−0.395675 + 0.918391i \(0.629489\pi\)
\(462\) 3.44777 5.97171i 0.160405 0.277829i
\(463\) 27.4279 1.27468 0.637340 0.770582i \(-0.280035\pi\)
0.637340 + 0.770582i \(0.280035\pi\)
\(464\) −0.0521088 −0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) −22.9105 −1.06017 −0.530086 0.847944i \(-0.677840\pi\)
−0.530086 + 0.847944i \(0.677840\pi\)
\(468\) 10.9222 18.9179i 0.504881 0.874479i
\(469\) 7.73159 0.357012
\(470\) −23.1663 40.1253i −1.06858 1.85084i
\(471\) 10.1639 17.6043i 0.468327 0.811165i
\(472\) −14.5252 + 25.1583i −0.668575 + 1.15801i
\(473\) 0.169102 0.00777531
\(474\) 13.2836 + 23.0079i 0.610138 + 1.05679i
\(475\) 2.88091 + 4.98988i 0.132185 + 0.228951i
\(476\) 11.6613 + 20.1980i 0.534496 + 0.925775i
\(477\) −9.93585 + 17.2094i −0.454931 + 0.787964i
\(478\) 27.0468 + 46.8464i 1.23709 + 2.14270i
\(479\) −4.52353 + 7.83498i −0.206685 + 0.357989i −0.950668 0.310209i \(-0.899601\pi\)
0.743983 + 0.668198i \(0.232934\pi\)
\(480\) −32.9138 −1.50230
\(481\) −15.9821 −0.728720
\(482\) −28.5119 + 49.3841i −1.29868 + 2.24938i
\(483\) −14.4972 25.1099i −0.659647 1.14254i
\(484\) 17.3910 30.1221i 0.790499 1.36918i
\(485\) 15.3529 + 26.5919i 0.697138 + 1.20748i
\(486\) −25.7678 44.6311i −1.16885 2.02451i
\(487\) 11.8113 + 20.4578i 0.535223 + 0.927033i 0.999153 + 0.0411607i \(0.0131056\pi\)
−0.463930 + 0.885872i \(0.653561\pi\)
\(488\) −23.9661 −1.08490
\(489\) −21.6963 + 37.5791i −0.981141 + 1.69939i
\(490\) −12.7815 + 22.1383i −0.577411 + 1.00011i
\(491\) −4.61346 7.99074i −0.208202 0.360617i 0.742946 0.669351i \(-0.233428\pi\)
−0.951148 + 0.308734i \(0.900095\pi\)
\(492\) 62.3377 2.81040
\(493\) −0.282327 + 0.489005i −0.0127154 + 0.0220237i
\(494\) 20.2914 0.912955
\(495\) −6.35220 −0.285510
\(496\) 0 0
\(497\) −5.45442 −0.244664
\(498\) −15.6680 −0.702101
\(499\) −14.2070 + 24.6072i −0.635992 + 1.10157i 0.350313 + 0.936633i \(0.386075\pi\)
−0.986304 + 0.164937i \(0.947258\pi\)
\(500\) 31.2136 1.39592
\(501\) −30.9859 53.6692i −1.38435 2.39776i
\(502\) 26.7606 46.3506i 1.19438 2.06873i
\(503\) −9.13903 + 15.8293i −0.407489 + 0.705792i −0.994608 0.103709i \(-0.966929\pi\)
0.587118 + 0.809501i \(0.300262\pi\)
\(504\) 16.9686 0.755842
\(505\) 9.17474 + 15.8911i 0.408271 + 0.707146i
\(506\) 6.02554 + 10.4365i 0.267868 + 0.463961i
\(507\) −11.9575 20.7110i −0.531052 0.919809i
\(508\) 2.13949 3.70570i 0.0949243 0.164414i
\(509\) −5.19318 8.99485i −0.230184 0.398690i 0.727678 0.685918i \(-0.240599\pi\)
−0.957862 + 0.287229i \(0.907266\pi\)
\(510\) 32.0987 55.5965i 1.42135 2.46186i
\(511\) 4.31233 0.190766
\(512\) −4.56446 −0.201722
\(513\) −2.74455 + 4.75370i −0.121175 + 0.209881i
\(514\) −17.7058 30.6673i −0.780968 1.35268i
\(515\) 6.98163 12.0925i 0.307648 0.532861i
\(516\) 0.974259 + 1.68747i 0.0428894 + 0.0742865i
\(517\) 2.94802 + 5.10613i 0.129654 + 0.224567i
\(518\) −15.5793 26.9841i −0.684514 1.18561i
\(519\) −22.8174 −1.00157
\(520\) −7.23990 + 12.5399i −0.317491 + 0.549910i
\(521\) −4.62522 + 8.01111i −0.202635 + 0.350973i −0.949376 0.314141i \(-0.898284\pi\)
0.746742 + 0.665114i \(0.231617\pi\)
\(522\) 0.515537 + 0.892937i 0.0225645 + 0.0390828i
\(523\) −6.57516 −0.287512 −0.143756 0.989613i \(-0.545918\pi\)
−0.143756 + 0.989613i \(0.545918\pi\)
\(524\) 13.3326 23.0927i 0.582435 1.00881i
\(525\) −5.06005 −0.220839
\(526\) −15.7047 −0.684759
\(527\) 0 0
\(528\) −0.753909 −0.0328097
\(529\) 27.6725 1.20315
\(530\) 16.5297 28.6303i 0.718004 1.24362i
\(531\) 32.9346 1.42924
\(532\) 12.3504 + 21.3916i 0.535460 + 0.927443i
\(533\) −6.99044 + 12.1078i −0.302790 + 0.524447i
\(534\) −6.46760 + 11.2022i −0.279880 + 0.484767i
\(535\) −4.55759 −0.197042
\(536\) −7.37678 12.7770i −0.318628 0.551881i
\(537\) −14.3543 24.8624i −0.619435 1.07289i
\(538\) −12.1372 21.0222i −0.523271 0.906332i
\(539\) 1.62651 2.81720i 0.0700588 0.121345i
\(540\) −4.91541 8.51375i −0.211526 0.366373i
\(541\) 1.10164 1.90809i 0.0473631 0.0820353i −0.841372 0.540457i \(-0.818252\pi\)
0.888735 + 0.458421i \(0.151585\pi\)
\(542\) −3.63929 −0.156321
\(543\) 37.9909 1.63035
\(544\) −11.3442 + 19.6488i −0.486380 + 0.842435i
\(545\) 14.6975 + 25.4569i 0.629574 + 1.09045i
\(546\) −8.91001 + 15.4326i −0.381313 + 0.660454i
\(547\) 2.43172 + 4.21187i 0.103973 + 0.180086i 0.913318 0.407247i \(-0.133511\pi\)
−0.809345 + 0.587333i \(0.800178\pi\)
\(548\) 27.3900 + 47.4408i 1.17004 + 2.02657i
\(549\) 13.5853 + 23.5304i 0.579807 + 1.00425i
\(550\) 2.10313 0.0896777
\(551\) −0.299011 + 0.517903i −0.0127383 + 0.0220634i
\(552\) −27.6639 + 47.9152i −1.17745 + 2.03941i
\(553\) −3.62661 6.28147i −0.154219 0.267115i
\(554\) 27.9242 1.18639
\(555\) −26.7758 + 46.3770i −1.13657 + 1.96859i
\(556\) 24.4025 1.03490
\(557\) 11.0363 0.467623 0.233811 0.972282i \(-0.424880\pi\)
0.233811 + 0.972282i \(0.424880\pi\)
\(558\) 0 0
\(559\) −0.437007 −0.0184834
\(560\) −1.61744 −0.0683494
\(561\) −4.08471 + 7.07492i −0.172456 + 0.298703i
\(562\) −49.5489 −2.09010
\(563\) 5.59621 + 9.69292i 0.235852 + 0.408508i 0.959520 0.281641i \(-0.0908786\pi\)
−0.723668 + 0.690148i \(0.757545\pi\)
\(564\) −33.9694 + 58.8366i −1.43037 + 2.47747i
\(565\) 13.8097 23.9190i 0.580976 1.00628i
\(566\) −1.58944 −0.0668091
\(567\) 5.91656 + 10.2478i 0.248472 + 0.430366i
\(568\) 5.20411 + 9.01379i 0.218360 + 0.378210i
\(569\) 23.4610 + 40.6356i 0.983536 + 1.70353i 0.648270 + 0.761411i \(0.275493\pi\)
0.335266 + 0.942123i \(0.391174\pi\)
\(570\) 33.9955 58.8819i 1.42391 2.46629i
\(571\) 10.2298 + 17.7186i 0.428105 + 0.741500i 0.996705 0.0811145i \(-0.0258480\pi\)
−0.568600 + 0.822614i \(0.692515\pi\)
\(572\) 2.31231 4.00503i 0.0966824 0.167459i
\(573\) −5.74892 −0.240164
\(574\) −27.2570 −1.13769
\(575\) 4.42163 7.65849i 0.184395 0.319381i
\(576\) 22.1154 + 38.3050i 0.921474 + 1.59604i
\(577\) −1.82417 + 3.15956i −0.0759413 + 0.131534i −0.901495 0.432789i \(-0.857530\pi\)
0.825554 + 0.564323i \(0.190863\pi\)
\(578\) −2.51260 4.35195i −0.104510 0.181017i
\(579\) 32.6286 + 56.5143i 1.35600 + 2.34865i
\(580\) −0.535521 0.927549i −0.0222363 0.0385144i
\(581\) 4.27758 0.177464
\(582\) 36.0548 62.4488i 1.49452 2.58858i
\(583\) −2.10348 + 3.64334i −0.0871173 + 0.150892i
\(584\) −4.11443 7.12641i −0.170256 0.294893i
\(585\) 16.4159 0.678713
\(586\) −10.3976 + 18.0091i −0.429520 + 0.743950i
\(587\) −22.8726 −0.944053 −0.472027 0.881584i \(-0.656477\pi\)
−0.472027 + 0.881584i \(0.656477\pi\)
\(588\) 37.4838 1.54580
\(589\) 0 0
\(590\) −54.7914 −2.25573
\(591\) 15.7540 0.648032
\(592\) −1.70332 + 2.95024i −0.0700062 + 0.121254i
\(593\) −19.4598 −0.799117 −0.399558 0.916708i \(-0.630837\pi\)
−0.399558 + 0.916708i \(0.630837\pi\)
\(594\) 1.00179 + 1.73515i 0.0411040 + 0.0711943i
\(595\) −8.76336 + 15.1786i −0.359263 + 0.622261i
\(596\) 10.5757 18.3176i 0.433197 0.750319i
\(597\) 11.6185 0.475515
\(598\) −15.5717 26.9710i −0.636774 1.10292i
\(599\) −17.5859 30.4597i −0.718541 1.24455i −0.961578 0.274533i \(-0.911477\pi\)
0.243036 0.970017i \(-0.421857\pi\)
\(600\) 4.82784 + 8.36207i 0.197096 + 0.341380i
\(601\) −2.94403 + 5.09921i −0.120089 + 0.208001i −0.919803 0.392381i \(-0.871651\pi\)
0.799713 + 0.600382i \(0.204985\pi\)
\(602\) −0.425992 0.737840i −0.0173621 0.0300721i
\(603\) −8.36312 + 14.4854i −0.340573 + 0.589889i
\(604\) −18.3680 −0.747382
\(605\) 26.1383 1.06267
\(606\) 21.5460 37.3188i 0.875248 1.51597i
\(607\) −19.4424 33.6753i −0.789143 1.36684i −0.926492 0.376314i \(-0.877191\pi\)
0.137349 0.990523i \(-0.456142\pi\)
\(608\) −12.0146 + 20.8099i −0.487257 + 0.843953i
\(609\) −0.262593 0.454824i −0.0106408 0.0184304i
\(610\) −22.6011 39.1462i −0.915091 1.58498i
\(611\) −7.61853 13.1957i −0.308213 0.533840i
\(612\) −50.4554 −2.03954
\(613\) 22.8012 39.4928i 0.920931 1.59510i 0.122954 0.992412i \(-0.460763\pi\)
0.797977 0.602688i \(-0.205904\pi\)
\(614\) 36.1505 62.6144i 1.45891 2.52691i
\(615\) 23.4231 + 40.5699i 0.944509 + 1.63594i
\(616\) 3.59236 0.144740
\(617\) 3.31324 5.73870i 0.133386 0.231031i −0.791594 0.611048i \(-0.790748\pi\)
0.924980 + 0.380016i \(0.124082\pi\)
\(618\) −32.7915 −1.31907
\(619\) 41.5360 1.66947 0.834736 0.550650i \(-0.185620\pi\)
0.834736 + 0.550650i \(0.185620\pi\)
\(620\) 0 0
\(621\) 8.42469 0.338071
\(622\) −40.8754 −1.63895
\(623\) 1.76574 3.05835i 0.0707429 0.122530i
\(624\) 1.94831 0.0779950
\(625\) 14.8341 + 25.6934i 0.593364 + 1.02774i
\(626\) 25.0006 43.3022i 0.999223 1.73071i
\(627\) −4.32609 + 7.49300i −0.172767 + 0.299242i
\(628\) 26.5791 1.06062
\(629\) 18.4574 + 31.9691i 0.735943 + 1.27469i
\(630\) 16.0021 + 27.7165i 0.637540 + 1.10425i
\(631\) −5.57236 9.65160i −0.221832 0.384224i 0.733532 0.679655i \(-0.237870\pi\)
−0.955364 + 0.295430i \(0.904537\pi\)
\(632\) −6.92036 + 11.9864i −0.275277 + 0.476794i
\(633\) −23.6687 40.9953i −0.940745 1.62942i
\(634\) −1.17228 + 2.03044i −0.0465571 + 0.0806392i
\(635\) 3.21560 0.127607
\(636\) −48.4758 −1.92219
\(637\) −4.20336 + 7.28044i −0.166543 + 0.288462i
\(638\) 0.109143 + 0.189040i 0.00432099 + 0.00748418i
\(639\) 5.89995 10.2190i 0.233398 0.404258i
\(640\) −23.8478 41.3056i −0.942666 1.63275i
\(641\) −8.77665 15.2016i −0.346657 0.600427i 0.638996 0.769210i \(-0.279350\pi\)
−0.985653 + 0.168782i \(0.946017\pi\)
\(642\) 5.35154 + 9.26914i 0.211209 + 0.365824i
\(643\) −2.19605 −0.0866038 −0.0433019 0.999062i \(-0.513788\pi\)
−0.0433019 + 0.999062i \(0.513788\pi\)
\(644\) 18.9555 32.8319i 0.746952 1.29376i
\(645\) −0.732145 + 1.26811i −0.0288282 + 0.0499318i
\(646\) −23.4341 40.5891i −0.922003 1.59696i
\(647\) −32.4446 −1.27553 −0.637764 0.770232i \(-0.720140\pi\)
−0.637764 + 0.770232i \(0.720140\pi\)
\(648\) 11.2901 19.5550i 0.443516 0.768193i
\(649\) 6.97247 0.273693
\(650\) −5.43508 −0.213181
\(651\) 0 0
\(652\) −56.7370 −2.22199
\(653\) 16.4900 0.645302 0.322651 0.946518i \(-0.395426\pi\)
0.322651 + 0.946518i \(0.395426\pi\)
\(654\) 34.5158 59.7832i 1.34968 2.33771i
\(655\) 20.0385 0.782970
\(656\) 1.49004 + 2.58083i 0.0581764 + 0.100764i
\(657\) −4.66457 + 8.07927i −0.181982 + 0.315202i
\(658\) 14.8530 25.7262i 0.579031 1.00291i
\(659\) −19.7414 −0.769015 −0.384508 0.923122i \(-0.625629\pi\)
−0.384508 + 0.923122i \(0.625629\pi\)
\(660\) −7.74790 13.4198i −0.301587 0.522364i
\(661\) −5.89041 10.2025i −0.229110 0.396831i 0.728434 0.685116i \(-0.240248\pi\)
−0.957545 + 0.288285i \(0.906915\pi\)
\(662\) −30.7933 53.3356i −1.19682 2.07295i
\(663\) 10.5560 18.2836i 0.409962 0.710076i
\(664\) −4.08127 7.06897i −0.158384 0.274329i
\(665\) −9.28122 + 16.0755i −0.359910 + 0.623383i
\(666\) 67.4072 2.61198
\(667\) 0.917847 0.0355392
\(668\) 40.5149 70.1739i 1.56757 2.71511i
\(669\) 7.90146 + 13.6857i 0.305488 + 0.529121i
\(670\) 13.9132 24.0984i 0.537516 0.931004i
\(671\) 2.87609 + 4.98154i 0.111030 + 0.192310i
\(672\) −10.5513 18.2754i −0.407024 0.704987i
\(673\) −25.1911 43.6322i −0.971044 1.68190i −0.692416 0.721498i \(-0.743454\pi\)
−0.278628 0.960399i \(-0.589880\pi\)
\(674\) 73.7060 2.83905
\(675\) 0.735130 1.27328i 0.0282952 0.0490087i
\(676\) 15.6348 27.0802i 0.601337 1.04155i
\(677\) 1.98998 + 3.44674i 0.0764810 + 0.132469i 0.901729 0.432301i \(-0.142298\pi\)
−0.825248 + 0.564770i \(0.808965\pi\)
\(678\) −64.8614 −2.49099
\(679\) −9.84344 + 17.0493i −0.377756 + 0.654293i
\(680\) 33.4448 1.28255
\(681\) 33.1770 1.27134
\(682\) 0 0
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) −53.4370 −2.04321
\(685\) −20.5833 + 35.6512i −0.786446 + 1.36216i
\(686\) −42.2643 −1.61366
\(687\) 19.4238 + 33.6430i 0.741064 + 1.28356i
\(688\) −0.0465749 + 0.0806701i −0.00177565 + 0.00307552i
\(689\) 5.43599 9.41541i 0.207095 0.358699i
\(690\) −104.353 −3.97265
\(691\) −4.59777 7.96356i −0.174907 0.302948i 0.765222 0.643767i \(-0.222629\pi\)
−0.940129 + 0.340818i \(0.889296\pi\)
\(692\) −14.9172 25.8373i −0.567066 0.982187i
\(693\) −2.03635 3.52705i −0.0773544 0.133982i
\(694\) −3.60125 + 6.23756i −0.136702 + 0.236774i
\(695\) 9.16912 + 15.8814i 0.347805 + 0.602415i
\(696\) −0.501085 + 0.867904i −0.0189936 + 0.0328978i
\(697\) 32.2924 1.22316
\(698\) −50.8266 −1.92382
\(699\) 16.6056 28.7617i 0.628081 1.08787i
\(700\) −3.30808 5.72976i −0.125034 0.216564i
\(701\) 20.2772 35.1211i 0.765858 1.32650i −0.173935 0.984757i \(-0.555648\pi\)
0.939792 0.341747i \(-0.111019\pi\)
\(702\) −2.58891 4.48413i −0.0977122 0.169243i
\(703\) 19.5481 + 33.8582i 0.737269 + 1.27699i
\(704\) 4.68197 + 8.10940i 0.176458 + 0.305635i
\(705\) −51.0552 −1.92285
\(706\) −5.69081 + 9.85678i −0.214177 + 0.370965i
\(707\) −5.88235 + 10.1885i −0.221229 + 0.383179i
\(708\) 40.1710 + 69.5782i 1.50972 + 2.61491i
\(709\) −37.2861 −1.40031 −0.700154 0.713992i \(-0.746885\pi\)
−0.700154 + 0.713992i \(0.746885\pi\)
\(710\) −9.81541 + 17.0008i −0.368366 + 0.638028i
\(711\) 15.6913 0.588471
\(712\) −6.73883 −0.252548
\(713\) 0 0
\(714\) 41.1599 1.54037
\(715\) 3.47535 0.129971
\(716\) 18.7687 32.5083i 0.701418 1.21489i
\(717\) 59.6071 2.22607
\(718\) 0.416347 + 0.721134i 0.0155379 + 0.0269125i
\(719\) 9.28994 16.0906i 0.346456 0.600080i −0.639161 0.769073i \(-0.720718\pi\)
0.985617 + 0.168993i \(0.0540516\pi\)
\(720\) 1.74956 3.03032i 0.0652022 0.112933i
\(721\) 8.95250 0.333409
\(722\) −2.89743 5.01850i −0.107831 0.186769i
\(723\) 31.4180 + 54.4176i 1.16845 + 2.02381i
\(724\) 24.8371 + 43.0191i 0.923063 + 1.59879i
\(725\) 0.0800904 0.138721i 0.00297448 0.00515196i
\(726\) −30.6916 53.1595i −1.13907 1.97293i
\(727\) −8.18859 + 14.1830i −0.303698 + 0.526020i −0.976971 0.213374i \(-0.931555\pi\)
0.673273 + 0.739394i \(0.264888\pi\)
\(728\) −9.28367 −0.344076
\(729\) −34.6273 −1.28249
\(730\) 7.76017 13.4410i 0.287217 0.497474i
\(731\) 0.504689 + 0.874147i 0.0186666 + 0.0323315i
\(732\) −33.1405 + 57.4011i −1.22491 + 2.12160i
\(733\) 0.575669 + 0.997088i 0.0212628 + 0.0368283i 0.876461 0.481473i \(-0.159898\pi\)
−0.855198 + 0.518301i \(0.826565\pi\)
\(734\) 33.9055 + 58.7261i 1.25148 + 2.16762i
\(735\) 14.0843 + 24.3948i 0.519508 + 0.899814i
\(736\) 36.8801 1.35942
\(737\) −1.77053 + 3.06664i −0.0652182 + 0.112961i
\(738\) 29.4834 51.0668i 1.08530 1.87979i
\(739\) 10.3579 + 17.9404i 0.381022 + 0.659949i 0.991209 0.132309i \(-0.0422390\pi\)
−0.610187 + 0.792257i \(0.708906\pi\)
\(740\) −70.0201 −2.57399
\(741\) 11.1798 19.3640i 0.410701 0.711356i
\(742\) 21.1959 0.778126
\(743\) −35.2367 −1.29271 −0.646354 0.763038i \(-0.723707\pi\)
−0.646354 + 0.763038i \(0.723707\pi\)
\(744\) 0 0
\(745\) 15.8950 0.582348
\(746\) 40.9087 1.49778
\(747\) −4.62698 + 8.01416i −0.169292 + 0.293223i
\(748\) −10.6817 −0.390563
\(749\) −1.46104 2.53060i −0.0533853 0.0924660i
\(750\) 27.5429 47.7058i 1.00573 1.74197i
\(751\) 21.5729 37.3654i 0.787207 1.36348i −0.140464 0.990086i \(-0.544859\pi\)
0.927671 0.373398i \(-0.121807\pi\)
\(752\) −3.24784 −0.118437
\(753\) −29.4882 51.0750i −1.07461 1.86128i
\(754\) −0.282055 0.488534i −0.0102718 0.0177913i
\(755\) −6.90166 11.9540i −0.251177 0.435052i
\(756\) 3.15150 5.45856i 0.114619 0.198526i
\(757\) 13.6693 + 23.6759i 0.496819 + 0.860515i 0.999993 0.00366955i \(-0.00116806\pi\)
−0.503175 + 0.864185i \(0.667835\pi\)
\(758\) 2.83874 4.91685i 0.103108 0.178588i
\(759\) 13.2794 0.482011
\(760\) 35.4212 1.28486
\(761\) −8.59598 + 14.8887i −0.311604 + 0.539714i −0.978710 0.205249i \(-0.934200\pi\)
0.667106 + 0.744963i \(0.267533\pi\)
\(762\) −3.77577 6.53983i −0.136782 0.236913i
\(763\) −9.42328 + 16.3216i −0.341146 + 0.590882i
\(764\) −3.75843 6.50979i −0.135975 0.235516i
\(765\) −18.9583 32.8368i −0.685440 1.18722i
\(766\) 22.0575 + 38.2048i 0.796972 + 1.38040i
\(767\) −18.0188 −0.650622
\(768\) −23.5506 + 40.7908i −0.849809 + 1.47191i
\(769\) −7.02837 + 12.1735i −0.253450 + 0.438987i −0.964473 0.264181i \(-0.914899\pi\)
0.711024 + 0.703168i \(0.248232\pi\)
\(770\) 3.38775 + 5.86776i 0.122086 + 0.211459i
\(771\) −39.0209 −1.40530
\(772\) −42.6627 + 73.8940i −1.53546 + 2.65950i
\(773\) −22.2368 −0.799803 −0.399902 0.916558i \(-0.630956\pi\)
−0.399902 + 0.916558i \(0.630956\pi\)
\(774\) 1.84315 0.0662507
\(775\) 0 0
\(776\) 37.5668 1.34857
\(777\) −34.3344 −1.23174
\(778\) −6.08156 + 10.5336i −0.218034 + 0.377647i
\(779\) 34.2007 1.22537
\(780\) 20.0228 + 34.6804i 0.716930 + 1.24176i
\(781\) 1.24906 2.16343i 0.0446948 0.0774136i
\(782\) −35.9668 + 62.2963i −1.28617 + 2.22771i
\(783\) 0.152599 0.00545345
\(784\) 0.895965 + 1.55186i 0.0319988 + 0.0554235i
\(785\) 9.98694 + 17.2979i 0.356449 + 0.617388i
\(786\) −23.5293 40.7540i −0.839263 1.45365i
\(787\) −16.0169 + 27.7421i −0.570941 + 0.988899i 0.425529 + 0.904945i \(0.360088\pi\)
−0.996470 + 0.0839540i \(0.973245\pi\)
\(788\) 10.2994 + 17.8390i 0.366900 + 0.635490i
\(789\) −8.65273 + 14.9870i −0.308045 + 0.533550i
\(790\) −26.1048 −0.928767
\(791\) 17.7080 0.629625
\(792\) −3.88579 + 6.73039i −0.138076 + 0.239154i
\(793\) −7.43264 12.8737i −0.263941 0.457159i
\(794\) −19.5280 + 33.8235i −0.693024 + 1.20035i
\(795\) −18.2145 31.5484i −0.646002 1.11891i
\(796\) 7.59578 + 13.1563i 0.269225 + 0.466312i
\(797\) −13.0246 22.5593i −0.461356 0.799092i 0.537673 0.843154i \(-0.319304\pi\)
−0.999029 + 0.0440614i \(0.985970\pi\)
\(798\) 43.5922 1.54315
\(799\) −17.5969 + 30.4788i −0.622535 + 1.07826i
\(800\) 3.21812 5.57395i 0.113778 0.197069i
\(801\) 3.81994 + 6.61633i 0.134971 + 0.233776i
\(802\) 87.7775 3.09953
\(803\) −0.987519 + 1.71043i −0.0348488 + 0.0603599i
\(804\) −40.8027 −1.43900
\(805\) 28.4897 1.00413
\(806\) 0 0
\(807\) −26.7486 −0.941594
\(808\) 22.4496 0.789775
\(809\) 4.36471 7.55989i 0.153455 0.265792i −0.779040 0.626974i \(-0.784293\pi\)
0.932495 + 0.361182i \(0.117627\pi\)
\(810\) 42.5881 1.49639
\(811\) 25.0392 + 43.3692i 0.879245 + 1.52290i 0.852170 + 0.523264i \(0.175286\pi\)
0.0270750 + 0.999633i \(0.491381\pi\)
\(812\) 0.343347 0.594695i 0.0120491 0.0208697i
\(813\) −2.00511 + 3.47296i −0.0703225 + 0.121802i
\(814\) 14.2705 0.500182
\(815\) −21.3186 36.9249i −0.746758 1.29342i
\(816\) −2.25006 3.89722i −0.0787680 0.136430i
\(817\) 0.534513 + 0.925804i 0.0187003 + 0.0323898i
\(818\) −0.575363 + 0.996558i −0.0201171 + 0.0348438i
\(819\) 5.26249 + 9.11490i 0.183886 + 0.318500i
\(820\) −30.6263 + 53.0462i −1.06952 + 1.85246i
\(821\) −50.7831 −1.77234 −0.886171 0.463359i \(-0.846644\pi\)
−0.886171 + 0.463359i \(0.846644\pi\)
\(822\) 96.6758 3.37195
\(823\) 3.16460 5.48125i 0.110311 0.191064i −0.805585 0.592481i \(-0.798149\pi\)
0.915896 + 0.401416i \(0.131482\pi\)
\(824\) −8.54166 14.7946i −0.297563 0.515394i
\(825\) 1.15875 2.00701i 0.0403424 0.0698750i
\(826\) −17.5647 30.4229i −0.611153 1.05855i
\(827\) −1.84873 3.20209i −0.0642865 0.111347i 0.832091 0.554639i \(-0.187144\pi\)
−0.896377 + 0.443292i \(0.853810\pi\)
\(828\) 41.0077 + 71.0274i 1.42511 + 2.46837i
\(829\) 26.0416 0.904461 0.452230 0.891901i \(-0.350628\pi\)
0.452230 + 0.891901i \(0.350628\pi\)
\(830\) 7.69763 13.3327i 0.267189 0.462784i
\(831\) 15.3852 26.6479i 0.533707 0.924407i
\(832\) −12.0995 20.9570i −0.419475 0.726553i
\(833\) 19.4175 0.672776
\(834\) 21.5328 37.2960i 0.745621 1.29145i
\(835\) 60.8930 2.10729
\(836\) −11.3130 −0.391267
\(837\) 0 0
\(838\) 31.1747 1.07691
\(839\) 7.49300 0.258687 0.129343 0.991600i \(-0.458713\pi\)
0.129343 + 0.991600i \(0.458713\pi\)
\(840\) −15.5535 + 26.9395i −0.536647 + 0.929501i
\(841\) −28.9834 −0.999427
\(842\) 35.6687 + 61.7800i 1.22923 + 2.12908i
\(843\) −27.2996 + 47.2843i −0.940249 + 1.62856i
\(844\) 30.9474 53.6025i 1.06525 1.84507i
\(845\) 23.4987 0.808380
\(846\) 32.1325 + 55.6551i 1.10474 + 1.91346i
\(847\) 8.37922 + 14.5132i 0.287914 + 0.498681i
\(848\) −1.15870 2.00693i −0.0397901 0.0689184i
\(849\) −0.875722 + 1.51680i −0.0300547 + 0.0520563i
\(850\) 6.27685 + 10.8718i 0.215294 + 0.372900i
\(851\) 30.0025 51.9658i 1.02847 1.78136i
\(852\) 28.7851 0.986163
\(853\) −43.5869 −1.49239 −0.746194 0.665728i \(-0.768121\pi\)
−0.746194 + 0.665728i \(0.768121\pi\)
\(854\) 14.4906 25.0985i 0.495858 0.858852i
\(855\) −20.0787 34.7772i −0.686675 1.18936i
\(856\) −2.78799 + 4.82893i −0.0952914 + 0.165050i
\(857\) −19.6114 33.9679i −0.669912 1.16032i −0.977928 0.208941i \(-0.932998\pi\)
0.308016 0.951381i \(-0.400335\pi\)
\(858\) −4.08077 7.06809i −0.139315 0.241301i
\(859\) 9.10065 + 15.7628i 0.310510 + 0.537819i 0.978473 0.206375i \(-0.0661668\pi\)
−0.667963 + 0.744195i \(0.732833\pi\)
\(860\) −1.91460 −0.0652872
\(861\) −15.0176 + 26.0113i −0.511799 + 0.886461i
\(862\) 13.9084 24.0900i 0.473721 0.820509i
\(863\) −22.4738 38.9258i −0.765018 1.32505i −0.940237 0.340521i \(-0.889397\pi\)
0.175219 0.984530i \(-0.443937\pi\)
\(864\) 6.13161 0.208602
\(865\) 11.2101 19.4164i 0.381155 0.660179i
\(866\) −74.7451 −2.53994
\(867\) −5.53740 −0.188060
\(868\) 0 0
\(869\) 3.32196 0.112690
\(870\) −1.89018 −0.0640830
\(871\) 4.57554 7.92506i 0.155036 0.268531i
\(872\) 35.9633 1.21787
\(873\) −21.2949 36.8839i −0.720724 1.24833i
\(874\) −38.0922 + 65.9776i −1.28849 + 2.23173i
\(875\) −7.51959 + 13.0243i −0.254208 + 0.440302i
\(876\) −22.7579 −0.768917
\(877\) 21.3255 + 36.9369i 0.720112 + 1.24727i 0.960955 + 0.276706i \(0.0892429\pi\)
−0.240843 + 0.970564i \(0.577424\pi\)
\(878\) −14.2699 24.7162i −0.481587 0.834133i
\(879\) 11.4574 + 19.8447i 0.386447 + 0.669346i
\(880\) 0.370392 0.641538i 0.0124859 0.0216263i
\(881\) 4.45826 + 7.72193i 0.150203 + 0.260159i 0.931302 0.364248i \(-0.118674\pi\)
−0.781099 + 0.624407i \(0.785341\pi\)
\(882\) 17.7284 30.7065i 0.596947 1.03394i
\(883\) 47.0683 1.58398 0.791988 0.610537i \(-0.209046\pi\)
0.791988 + 0.610537i \(0.209046\pi\)
\(884\) 27.6046 0.928443
\(885\) −30.1880 + 52.2872i −1.01476 + 1.75762i
\(886\) 5.44969 + 9.43914i 0.183086 + 0.317114i
\(887\) −1.57828 + 2.73367i −0.0529936 + 0.0917876i −0.891305 0.453404i \(-0.850210\pi\)
0.838312 + 0.545191i \(0.183543\pi\)
\(888\) 32.7588 + 56.7398i 1.09931 + 1.90406i
\(889\) 1.03083 + 1.78546i 0.0345731 + 0.0598823i
\(890\) −6.35501 11.0072i −0.213020 0.368962i
\(891\) −5.41954 −0.181561
\(892\) −10.3314 + 17.8944i −0.345920 + 0.599150i
\(893\) −18.6368 + 32.2799i −0.623657 + 1.08021i
\(894\) −18.6640 32.3270i −0.624217 1.08118i
\(895\) 28.2089 0.942920
\(896\) 15.2899 26.4829i 0.510800 0.884732i
\(897\) −34.3177 −1.14583
\(898\) −36.8840 −1.23083
\(899\) 0 0
\(900\) 14.3131 0.477105
\(901\) −25.1116 −0.836589
\(902\) 6.24182 10.8112i 0.207830 0.359972i
\(903\) −0.938824 −0.0312421
\(904\) −16.8954 29.2637i −0.561932 0.973295i
\(905\) −18.6648 + 32.3284i −0.620439 + 1.07463i
\(906\) −16.2079 + 28.0729i −0.538472 + 0.932661i
\(907\) 26.9632 0.895297 0.447649 0.894210i \(-0.352262\pi\)
0.447649 + 0.894210i \(0.352262\pi\)
\(908\) 21.6899 + 37.5680i 0.719804 + 1.24674i
\(909\) −12.7257 22.0415i −0.422084 0.731071i
\(910\) −8.75490 15.1639i −0.290222 0.502680i
\(911\) −2.53901 + 4.39769i −0.0841212 + 0.145702i −0.905016 0.425377i \(-0.860142\pi\)
0.820895 + 0.571079i \(0.193475\pi\)
\(912\) −2.38303 4.12753i −0.0789100 0.136676i
\(913\) −0.979560 + 1.69665i −0.0324187 + 0.0561508i
\(914\) 10.5171 0.347876
\(915\) −49.8095 −1.64665
\(916\) −25.3971 + 43.9891i −0.839144 + 1.45344i
\(917\) 6.42382 + 11.1264i 0.212133 + 0.367425i
\(918\) −5.97976 + 10.3572i −0.197361 + 0.341840i
\(919\) 24.6385 + 42.6751i 0.812749 + 1.40772i 0.910933 + 0.412554i \(0.135363\pi\)
−0.0981848 + 0.995168i \(0.531304\pi\)
\(920\) −27.1823 47.0811i −0.896174 1.55222i
\(921\) −39.8351 68.9965i −1.31261 2.27351i
\(922\) −39.2072 −1.29122
\(923\) −3.22791 + 5.59091i −0.106248 + 0.184027i
\(924\) 4.96754 8.60403i 0.163420 0.283052i
\(925\) −5.23597 9.06896i −0.172158 0.298186i
\(926\) 63.2905 2.07986
\(927\) −9.68376 + 16.7728i −0.318056 + 0.550890i
\(928\) 0.668022 0.0219289
\(929\) −39.9606 −1.31107 −0.655533 0.755167i \(-0.727556\pi\)
−0.655533 + 0.755167i \(0.727556\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) 43.4245 1.42242
\(933\) −22.5208 + 39.0072i −0.737299 + 1.27704i
\(934\) −52.8666 −1.72985
\(935\) −4.01360 6.95176i −0.131259 0.227347i
\(936\) 10.0420 17.3932i 0.328232 0.568515i
\(937\) −22.5446 + 39.0485i −0.736502 + 1.27566i 0.217560 + 0.976047i \(0.430190\pi\)
−0.954061 + 0.299611i \(0.903143\pi\)
\(938\) 17.8409 0.582525
\(939\) −27.5488 47.7159i −0.899020 1.55715i
\(940\) −33.3780 57.8124i −1.08867 1.88563i
\(941\) −25.0962 43.4678i −0.818112 1.41701i −0.907072 0.420976i \(-0.861688\pi\)
0.0889605 0.996035i \(-0.471646\pi\)
\(942\) 23.4534 40.6225i 0.764153 1.32355i
\(943\) −26.2457 45.4589i −0.854678 1.48034i
\(944\) −1.92039 + 3.32622i −0.0625035 + 0.108259i
\(945\) 4.73663 0.154083
\(946\) 0.390207 0.0126867
\(947\) −15.1630 + 26.2630i −0.492730 + 0.853434i −0.999965 0.00837391i \(-0.997334\pi\)
0.507234 + 0.861808i \(0.330668\pi\)
\(948\) 19.1390 + 33.1498i 0.621607 + 1.07666i
\(949\) 2.55203 4.42024i 0.0828423 0.143487i
\(950\) 6.64777 + 11.5143i 0.215682 + 0.373573i
\(951\) 1.29176 + 2.23740i 0.0418883 + 0.0725526i
\(952\) 10.7215 + 18.5702i 0.347486 + 0.601864i
\(953\) −35.4775 −1.14923 −0.574614 0.818425i \(-0.694848\pi\)
−0.574614 + 0.818425i \(0.694848\pi\)
\(954\) −22.9272 + 39.7111i −0.742297 + 1.28570i
\(955\) 2.82442 4.89204i 0.0913961 0.158303i
\(956\) 38.9689 + 67.4962i 1.26035 + 2.18298i
\(957\) 0.240534 0.00777536
\(958\) −10.4382 + 18.0794i −0.337242 + 0.584120i
\(959\) −26.3938 −0.852299
\(960\) −81.0843 −2.61698
\(961\) 0 0
\(962\) −36.8791 −1.18903
\(963\) 6.32153 0.203708
\(964\) −41.0799 + 71.1524i −1.32309 + 2.29167i
\(965\) −64.1211 −2.06413
\(966\) −33.4527 57.9418i −1.07632 1.86425i
\(967\) 17.7222 30.6957i 0.569906 0.987107i −0.426668 0.904408i \(-0.640313\pi\)
0.996575 0.0826987i \(-0.0263539\pi\)
\(968\) 15.9894 27.6944i 0.513918 0.890133i
\(969\) −51.6453 −1.65909
\(970\) 35.4271 + 61.3616i 1.13750 + 1.97020i
\(971\) 20.0486 + 34.7252i 0.643391 + 1.11439i 0.984671 + 0.174424i \(0.0558063\pi\)
−0.341280 + 0.939962i \(0.610860\pi\)
\(972\) −37.1261 64.3044i −1.19082 2.06256i
\(973\) −5.87875 + 10.1823i −0.188464 + 0.326429i
\(974\) 27.2550 + 47.2070i 0.873305 + 1.51261i
\(975\) −2.99453 + 5.18667i −0.0959016 + 0.166106i
\(976\) −3.16860 −0.101424
\(977\) −38.6708 −1.23719 −0.618595 0.785710i \(-0.712298\pi\)
−0.618595 + 0.785710i \(0.712298\pi\)
\(978\) −50.0648 + 86.7148i −1.60090 + 2.77283i
\(979\) 0.808705 + 1.40072i 0.0258463 + 0.0447671i
\(980\) −18.4156 + 31.8968i −0.588265 + 1.01891i
\(981\) −20.3860 35.3096i −0.650874 1.12735i
\(982\) −10.6457 18.4389i −0.339717 0.588407i
\(983\) 10.7898 + 18.6885i 0.344141 + 0.596070i 0.985197 0.171424i \(-0.0548368\pi\)
−0.641056 + 0.767494i \(0.721503\pi\)
\(984\) 57.3137 1.82710
\(985\) −7.73987 + 13.4058i −0.246613 + 0.427146i
\(986\) −0.651478 + 1.12839i −0.0207473 + 0.0359354i
\(987\) −16.3669 28.3483i −0.520965 0.902338i
\(988\) 29.2359 0.930116
\(989\) 0.820373 1.42093i 0.0260864 0.0451829i
\(990\) −14.6579 −0.465858
\(991\) 46.8764 1.48908 0.744538 0.667580i \(-0.232670\pi\)
0.744538 + 0.667580i \(0.232670\pi\)
\(992\) 0 0
\(993\) −67.8639 −2.15360
\(994\) −12.5862 −0.399211
\(995\) −5.70814 + 9.88680i −0.180960 + 0.313432i
\(996\) −22.5744 −0.715299
\(997\) −22.2695 38.5718i −0.705281 1.22158i −0.966590 0.256327i \(-0.917488\pi\)
0.261309 0.965255i \(-0.415846\pi\)
\(998\) −32.7830 + 56.7818i −1.03773 + 1.79740i
\(999\) 4.98814 8.63971i 0.157818 0.273348i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.j.439.8 16
31.2 even 5 961.2.g.t.547.2 16
31.3 odd 30 961.2.g.n.448.2 16
31.4 even 5 31.2.g.a.18.1 16
31.5 even 3 961.2.a.i.1.8 8
31.6 odd 6 961.2.c.i.521.8 16
31.7 even 15 961.2.g.k.338.1 16
31.8 even 5 961.2.g.k.816.1 16
31.9 even 15 961.2.d.o.374.1 16
31.10 even 15 961.2.d.p.531.4 16
31.11 odd 30 961.2.d.n.388.1 16
31.12 odd 30 961.2.g.m.844.2 16
31.13 odd 30 961.2.d.q.628.4 16
31.14 even 15 31.2.g.a.19.1 yes 16
31.15 odd 10 961.2.g.m.846.2 16
31.16 even 5 961.2.g.s.846.2 16
31.17 odd 30 961.2.g.l.732.1 16
31.18 even 15 961.2.d.p.628.4 16
31.19 even 15 961.2.g.s.844.2 16
31.20 even 15 961.2.d.o.388.1 16
31.21 odd 30 961.2.d.q.531.4 16
31.22 odd 30 961.2.d.n.374.1 16
31.23 odd 10 961.2.g.j.816.1 16
31.24 odd 30 961.2.g.j.338.1 16
31.25 even 3 inner 961.2.c.j.521.8 16
31.26 odd 6 961.2.a.j.1.8 8
31.27 odd 10 961.2.g.l.235.1 16
31.28 even 15 961.2.g.t.448.2 16
31.29 odd 10 961.2.g.n.547.2 16
31.30 odd 2 961.2.c.i.439.8 16
93.5 odd 6 8649.2.a.bf.1.1 8
93.14 odd 30 279.2.y.c.19.2 16
93.26 even 6 8649.2.a.be.1.1 8
93.35 odd 10 279.2.y.c.235.2 16
124.35 odd 10 496.2.bg.c.49.2 16
124.107 odd 30 496.2.bg.c.81.2 16
155.4 even 10 775.2.bl.a.576.2 16
155.14 even 30 775.2.bl.a.701.2 16
155.97 odd 20 775.2.ck.a.49.1 32
155.107 odd 60 775.2.ck.a.174.4 32
155.128 odd 20 775.2.ck.a.49.4 32
155.138 odd 60 775.2.ck.a.174.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 31.4 even 5
31.2.g.a.19.1 yes 16 31.14 even 15
279.2.y.c.19.2 16 93.14 odd 30
279.2.y.c.235.2 16 93.35 odd 10
496.2.bg.c.49.2 16 124.35 odd 10
496.2.bg.c.81.2 16 124.107 odd 30
775.2.bl.a.576.2 16 155.4 even 10
775.2.bl.a.701.2 16 155.14 even 30
775.2.ck.a.49.1 32 155.97 odd 20
775.2.ck.a.49.4 32 155.128 odd 20
775.2.ck.a.174.1 32 155.138 odd 60
775.2.ck.a.174.4 32 155.107 odd 60
961.2.a.i.1.8 8 31.5 even 3
961.2.a.j.1.8 8 31.26 odd 6
961.2.c.i.439.8 16 31.30 odd 2
961.2.c.i.521.8 16 31.6 odd 6
961.2.c.j.439.8 16 1.1 even 1 trivial
961.2.c.j.521.8 16 31.25 even 3 inner
961.2.d.n.374.1 16 31.22 odd 30
961.2.d.n.388.1 16 31.11 odd 30
961.2.d.o.374.1 16 31.9 even 15
961.2.d.o.388.1 16 31.20 even 15
961.2.d.p.531.4 16 31.10 even 15
961.2.d.p.628.4 16 31.18 even 15
961.2.d.q.531.4 16 31.21 odd 30
961.2.d.q.628.4 16 31.13 odd 30
961.2.g.j.338.1 16 31.24 odd 30
961.2.g.j.816.1 16 31.23 odd 10
961.2.g.k.338.1 16 31.7 even 15
961.2.g.k.816.1 16 31.8 even 5
961.2.g.l.235.1 16 31.27 odd 10
961.2.g.l.732.1 16 31.17 odd 30
961.2.g.m.844.2 16 31.12 odd 30
961.2.g.m.846.2 16 31.15 odd 10
961.2.g.n.448.2 16 31.3 odd 30
961.2.g.n.547.2 16 31.29 odd 10
961.2.g.s.844.2 16 31.19 even 15
961.2.g.s.846.2 16 31.16 even 5
961.2.g.t.448.2 16 31.28 even 15
961.2.g.t.547.2 16 31.2 even 5
8649.2.a.be.1.1 8 93.26 even 6
8649.2.a.bf.1.1 8 93.5 odd 6