Properties

Label 961.2.a.i.1.8
Level $961$
Weight $2$
Character 961.1
Self dual yes
Analytic conductor $7.674$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(1,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,-3,8,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.67362363425\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.2051578125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 9x^{6} + 19x^{5} + 14x^{4} - 28x^{3} - 11x^{2} + 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.11562\) of defining polynomial
Character \(\chi\) \(=\) 961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30753 q^{2} -2.54272 q^{3} +3.32468 q^{4} -2.49846 q^{5} -5.86740 q^{6} +1.60188 q^{7} +3.05673 q^{8} +3.46545 q^{9} -5.76526 q^{10} +0.733657 q^{11} -8.45374 q^{12} -1.89598 q^{13} +3.69638 q^{14} +6.35289 q^{15} +0.404135 q^{16} -4.37924 q^{17} +7.99661 q^{18} -4.63803 q^{19} -8.30658 q^{20} -4.07313 q^{21} +1.69293 q^{22} -7.11846 q^{23} -7.77243 q^{24} +1.24230 q^{25} -4.37501 q^{26} -1.18350 q^{27} +5.32573 q^{28} -0.128939 q^{29} +14.6595 q^{30} -5.18091 q^{32} -1.86549 q^{33} -10.1052 q^{34} -4.00223 q^{35} +11.5215 q^{36} +8.42948 q^{37} -10.7024 q^{38} +4.82094 q^{39} -7.63712 q^{40} -7.37398 q^{41} -9.39887 q^{42} +0.230492 q^{43} +2.43917 q^{44} -8.65827 q^{45} -16.4260 q^{46} -8.03652 q^{47} -1.02760 q^{48} -4.43399 q^{49} +2.86664 q^{50} +11.1352 q^{51} -6.30351 q^{52} +5.73424 q^{53} -2.73096 q^{54} -1.83301 q^{55} +4.89652 q^{56} +11.7932 q^{57} -0.297530 q^{58} +9.50372 q^{59} +21.1213 q^{60} -7.84044 q^{61} +5.55122 q^{63} -12.7634 q^{64} +4.73702 q^{65} -4.30466 q^{66} +4.82658 q^{67} -14.5596 q^{68} +18.1003 q^{69} -9.23525 q^{70} -3.40502 q^{71} +10.5929 q^{72} +2.69205 q^{73} +19.4512 q^{74} -3.15882 q^{75} -15.4200 q^{76} +1.17523 q^{77} +11.1245 q^{78} +4.52794 q^{79} -1.00972 q^{80} -7.38702 q^{81} -17.0157 q^{82} +2.67035 q^{83} -13.5419 q^{84} +10.9414 q^{85} +0.531866 q^{86} +0.327856 q^{87} +2.24259 q^{88} -2.20459 q^{89} -19.9792 q^{90} -3.03712 q^{91} -23.6666 q^{92} -18.5445 q^{94} +11.5879 q^{95} +13.1736 q^{96} +12.2899 q^{97} -10.2315 q^{98} +2.54245 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 3 q^{3} + 8 q^{4} + 3 q^{5} - 11 q^{6} - 2 q^{7} - 9 q^{8} + 5 q^{9} - 13 q^{10} - 18 q^{11} - 8 q^{13} - 9 q^{14} - 18 q^{15} + 4 q^{16} - 14 q^{17} + 23 q^{18} - 6 q^{19} - 7 q^{20} + q^{21}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30753 1.63167 0.815834 0.578286i \(-0.196278\pi\)
0.815834 + 0.578286i \(0.196278\pi\)
\(3\) −2.54272 −1.46804 −0.734021 0.679127i \(-0.762359\pi\)
−0.734021 + 0.679127i \(0.762359\pi\)
\(4\) 3.32468 1.66234
\(5\) −2.49846 −1.11735 −0.558673 0.829388i \(-0.688689\pi\)
−0.558673 + 0.829388i \(0.688689\pi\)
\(6\) −5.86740 −2.39536
\(7\) 1.60188 0.605453 0.302727 0.953077i \(-0.402103\pi\)
0.302727 + 0.953077i \(0.402103\pi\)
\(8\) 3.05673 1.08072
\(9\) 3.46545 1.15515
\(10\) −5.76526 −1.82314
\(11\) 0.733657 0.221206 0.110603 0.993865i \(-0.464722\pi\)
0.110603 + 0.993865i \(0.464722\pi\)
\(12\) −8.45374 −2.44039
\(13\) −1.89598 −0.525849 −0.262925 0.964816i \(-0.584687\pi\)
−0.262925 + 0.964816i \(0.584687\pi\)
\(14\) 3.69638 0.987898
\(15\) 6.35289 1.64031
\(16\) 0.404135 0.101034
\(17\) −4.37924 −1.06212 −0.531061 0.847334i \(-0.678206\pi\)
−0.531061 + 0.847334i \(0.678206\pi\)
\(18\) 7.99661 1.88482
\(19\) −4.63803 −1.06404 −0.532018 0.846733i \(-0.678566\pi\)
−0.532018 + 0.846733i \(0.678566\pi\)
\(20\) −8.30658 −1.85741
\(21\) −4.07313 −0.888831
\(22\) 1.69293 0.360934
\(23\) −7.11846 −1.48430 −0.742151 0.670233i \(-0.766194\pi\)
−0.742151 + 0.670233i \(0.766194\pi\)
\(24\) −7.77243 −1.58654
\(25\) 1.24230 0.248460
\(26\) −4.37501 −0.858011
\(27\) −1.18350 −0.227765
\(28\) 5.32573 1.00647
\(29\) −0.128939 −0.0239434 −0.0119717 0.999928i \(-0.503811\pi\)
−0.0119717 + 0.999928i \(0.503811\pi\)
\(30\) 14.6595 2.67644
\(31\) 0 0
\(32\) −5.18091 −0.915865
\(33\) −1.86549 −0.324740
\(34\) −10.1052 −1.73303
\(35\) −4.00223 −0.676500
\(36\) 11.5215 1.92025
\(37\) 8.42948 1.38580 0.692899 0.721035i \(-0.256333\pi\)
0.692899 + 0.721035i \(0.256333\pi\)
\(38\) −10.7024 −1.73615
\(39\) 4.82094 0.771969
\(40\) −7.63712 −1.20754
\(41\) −7.37398 −1.15162 −0.575811 0.817583i \(-0.695314\pi\)
−0.575811 + 0.817583i \(0.695314\pi\)
\(42\) −9.39887 −1.45028
\(43\) 0.230492 0.0351497 0.0175748 0.999846i \(-0.494405\pi\)
0.0175748 + 0.999846i \(0.494405\pi\)
\(44\) 2.43917 0.367719
\(45\) −8.65827 −1.29070
\(46\) −16.4260 −2.42189
\(47\) −8.03652 −1.17225 −0.586124 0.810222i \(-0.699347\pi\)
−0.586124 + 0.810222i \(0.699347\pi\)
\(48\) −1.02760 −0.148322
\(49\) −4.43399 −0.633427
\(50\) 2.86664 0.405404
\(51\) 11.1352 1.55924
\(52\) −6.30351 −0.874140
\(53\) 5.73424 0.787658 0.393829 0.919184i \(-0.371150\pi\)
0.393829 + 0.919184i \(0.371150\pi\)
\(54\) −2.73096 −0.371636
\(55\) −1.83301 −0.247163
\(56\) 4.89652 0.654324
\(57\) 11.7932 1.56205
\(58\) −0.297530 −0.0390676
\(59\) 9.50372 1.23728 0.618639 0.785675i \(-0.287684\pi\)
0.618639 + 0.785675i \(0.287684\pi\)
\(60\) 21.1213 2.72675
\(61\) −7.84044 −1.00387 −0.501933 0.864907i \(-0.667377\pi\)
−0.501933 + 0.864907i \(0.667377\pi\)
\(62\) 0 0
\(63\) 5.55122 0.699388
\(64\) −12.7634 −1.59542
\(65\) 4.73702 0.587555
\(66\) −4.30466 −0.529867
\(67\) 4.82658 0.589660 0.294830 0.955550i \(-0.404737\pi\)
0.294830 + 0.955550i \(0.404737\pi\)
\(68\) −14.5596 −1.76561
\(69\) 18.1003 2.17902
\(70\) −9.23525 −1.10382
\(71\) −3.40502 −0.404101 −0.202051 0.979375i \(-0.564761\pi\)
−0.202051 + 0.979375i \(0.564761\pi\)
\(72\) 10.5929 1.24839
\(73\) 2.69205 0.315080 0.157540 0.987513i \(-0.449644\pi\)
0.157540 + 0.987513i \(0.449644\pi\)
\(74\) 19.4512 2.26116
\(75\) −3.15882 −0.364750
\(76\) −15.4200 −1.76879
\(77\) 1.17523 0.133930
\(78\) 11.1245 1.25960
\(79\) 4.52794 0.509434 0.254717 0.967016i \(-0.418018\pi\)
0.254717 + 0.967016i \(0.418018\pi\)
\(80\) −1.00972 −0.112890
\(81\) −7.38702 −0.820780
\(82\) −17.0157 −1.87906
\(83\) 2.67035 0.293109 0.146554 0.989203i \(-0.453182\pi\)
0.146554 + 0.989203i \(0.453182\pi\)
\(84\) −13.5419 −1.47754
\(85\) 10.9414 1.18676
\(86\) 0.531866 0.0573526
\(87\) 0.327856 0.0351499
\(88\) 2.24259 0.239061
\(89\) −2.20459 −0.233686 −0.116843 0.993150i \(-0.537277\pi\)
−0.116843 + 0.993150i \(0.537277\pi\)
\(90\) −19.9792 −2.10599
\(91\) −3.03712 −0.318377
\(92\) −23.6666 −2.46741
\(93\) 0 0
\(94\) −18.5445 −1.91272
\(95\) 11.5879 1.18890
\(96\) 13.1736 1.34453
\(97\) 12.2899 1.24785 0.623923 0.781485i \(-0.285538\pi\)
0.623923 + 0.781485i \(0.285538\pi\)
\(98\) −10.2315 −1.03354
\(99\) 2.54245 0.255526
\(100\) 4.13025 0.413025
\(101\) 7.34432 0.730787 0.365394 0.930853i \(-0.380934\pi\)
0.365394 + 0.930853i \(0.380934\pi\)
\(102\) 25.6948 2.54416
\(103\) 5.58875 0.550676 0.275338 0.961347i \(-0.411210\pi\)
0.275338 + 0.961347i \(0.411210\pi\)
\(104\) −5.79549 −0.568295
\(105\) 10.1766 0.993131
\(106\) 13.2319 1.28520
\(107\) 1.82416 0.176348 0.0881741 0.996105i \(-0.471897\pi\)
0.0881741 + 0.996105i \(0.471897\pi\)
\(108\) −3.93476 −0.378622
\(109\) 11.7653 1.12691 0.563455 0.826147i \(-0.309472\pi\)
0.563455 + 0.826147i \(0.309472\pi\)
\(110\) −4.22972 −0.403288
\(111\) −21.4338 −2.03441
\(112\) 0.647376 0.0611712
\(113\) 11.0545 1.03992 0.519962 0.854190i \(-0.325946\pi\)
0.519962 + 0.854190i \(0.325946\pi\)
\(114\) 27.2132 2.54875
\(115\) 17.7852 1.65848
\(116\) −0.428681 −0.0398020
\(117\) −6.57040 −0.607434
\(118\) 21.9301 2.01883
\(119\) −7.01501 −0.643065
\(120\) 19.4191 1.77271
\(121\) −10.4617 −0.951068
\(122\) −18.0920 −1.63797
\(123\) 18.7500 1.69063
\(124\) 0 0
\(125\) 9.38846 0.839730
\(126\) 12.8096 1.14117
\(127\) −1.28703 −0.114206 −0.0571028 0.998368i \(-0.518186\pi\)
−0.0571028 + 0.998368i \(0.518186\pi\)
\(128\) −19.0900 −1.68733
\(129\) −0.586077 −0.0516012
\(130\) 10.9308 0.958694
\(131\) −8.02035 −0.700742 −0.350371 0.936611i \(-0.613944\pi\)
−0.350371 + 0.936611i \(0.613944\pi\)
\(132\) −6.20214 −0.539827
\(133\) −7.42955 −0.644224
\(134\) 11.1375 0.962130
\(135\) 2.95692 0.254492
\(136\) −13.3862 −1.14785
\(137\) −16.4768 −1.40770 −0.703852 0.710347i \(-0.748538\pi\)
−0.703852 + 0.710347i \(0.748538\pi\)
\(138\) 41.7669 3.55543
\(139\) 7.33982 0.622555 0.311278 0.950319i \(-0.399243\pi\)
0.311278 + 0.950319i \(0.399243\pi\)
\(140\) −13.3061 −1.12457
\(141\) 20.4347 1.72091
\(142\) −7.85717 −0.659359
\(143\) −1.39100 −0.116321
\(144\) 1.40051 0.116709
\(145\) 0.322149 0.0267530
\(146\) 6.21197 0.514106
\(147\) 11.2744 0.929897
\(148\) 28.0253 2.30367
\(149\) −6.36193 −0.521189 −0.260595 0.965448i \(-0.583919\pi\)
−0.260595 + 0.965448i \(0.583919\pi\)
\(150\) −7.28907 −0.595150
\(151\) −5.52473 −0.449596 −0.224798 0.974405i \(-0.572172\pi\)
−0.224798 + 0.974405i \(0.572172\pi\)
\(152\) −14.1772 −1.14992
\(153\) −15.1760 −1.22691
\(154\) 2.71187 0.218529
\(155\) 0 0
\(156\) 16.0281 1.28327
\(157\) 7.99448 0.638029 0.319014 0.947750i \(-0.396648\pi\)
0.319014 + 0.947750i \(0.396648\pi\)
\(158\) 10.4484 0.831226
\(159\) −14.5806 −1.15632
\(160\) 12.9443 1.02334
\(161\) −11.4029 −0.898675
\(162\) −17.0458 −1.33924
\(163\) −17.0654 −1.33667 −0.668333 0.743863i \(-0.732992\pi\)
−0.668333 + 0.743863i \(0.732992\pi\)
\(164\) −24.5161 −1.91439
\(165\) 4.66084 0.362846
\(166\) 6.16190 0.478256
\(167\) −24.3722 −1.88598 −0.942989 0.332824i \(-0.891999\pi\)
−0.942989 + 0.332824i \(0.891999\pi\)
\(168\) −12.4505 −0.960576
\(169\) −9.40528 −0.723483
\(170\) 25.2475 1.93639
\(171\) −16.0728 −1.22912
\(172\) 0.766311 0.0584307
\(173\) 8.97360 0.682250 0.341125 0.940018i \(-0.389192\pi\)
0.341125 + 0.940018i \(0.389192\pi\)
\(174\) 0.756537 0.0573529
\(175\) 1.99001 0.150431
\(176\) 0.296497 0.0223493
\(177\) −24.1653 −1.81638
\(178\) −5.08714 −0.381297
\(179\) −11.2905 −0.843893 −0.421946 0.906621i \(-0.638653\pi\)
−0.421946 + 0.906621i \(0.638653\pi\)
\(180\) −28.7860 −2.14558
\(181\) −14.9410 −1.11056 −0.555279 0.831664i \(-0.687389\pi\)
−0.555279 + 0.831664i \(0.687389\pi\)
\(182\) −7.00824 −0.519485
\(183\) 19.9361 1.47372
\(184\) −21.7592 −1.60411
\(185\) −21.0607 −1.54841
\(186\) 0 0
\(187\) −3.21286 −0.234947
\(188\) −26.7189 −1.94867
\(189\) −1.89582 −0.137901
\(190\) 26.7394 1.93988
\(191\) 2.26093 0.163595 0.0817975 0.996649i \(-0.473934\pi\)
0.0817975 + 0.996649i \(0.473934\pi\)
\(192\) 32.4537 2.34215
\(193\) 25.6643 1.84735 0.923677 0.383173i \(-0.125169\pi\)
0.923677 + 0.383173i \(0.125169\pi\)
\(194\) 28.3592 2.03607
\(195\) −12.0449 −0.862555
\(196\) −14.7416 −1.05297
\(197\) −6.19571 −0.441426 −0.220713 0.975339i \(-0.570838\pi\)
−0.220713 + 0.975339i \(0.570838\pi\)
\(198\) 5.86676 0.416933
\(199\) −4.56933 −0.323911 −0.161956 0.986798i \(-0.551780\pi\)
−0.161956 + 0.986798i \(0.551780\pi\)
\(200\) 3.79738 0.268515
\(201\) −12.2727 −0.865647
\(202\) 16.9472 1.19240
\(203\) −0.206545 −0.0144966
\(204\) 37.0210 2.59199
\(205\) 18.4236 1.28676
\(206\) 12.8962 0.898520
\(207\) −24.6686 −1.71459
\(208\) −0.766231 −0.0531285
\(209\) −3.40272 −0.235371
\(210\) 23.4827 1.62046
\(211\) −18.6168 −1.28163 −0.640816 0.767695i \(-0.721404\pi\)
−0.640816 + 0.767695i \(0.721404\pi\)
\(212\) 19.0645 1.30936
\(213\) 8.65802 0.593238
\(214\) 4.20930 0.287742
\(215\) −0.575874 −0.0392743
\(216\) −3.61764 −0.246149
\(217\) 0 0
\(218\) 27.1487 1.83874
\(219\) −6.84513 −0.462551
\(220\) −6.09418 −0.410869
\(221\) 8.30293 0.558516
\(222\) −49.4591 −3.31948
\(223\) 6.21495 0.416184 0.208092 0.978109i \(-0.433275\pi\)
0.208092 + 0.978109i \(0.433275\pi\)
\(224\) −8.29919 −0.554513
\(225\) 4.30512 0.287008
\(226\) 25.5086 1.69681
\(227\) −13.0478 −0.866013 −0.433006 0.901391i \(-0.642547\pi\)
−0.433006 + 0.901391i \(0.642547\pi\)
\(228\) 39.2087 2.59666
\(229\) 15.2779 1.00959 0.504797 0.863238i \(-0.331567\pi\)
0.504797 + 0.863238i \(0.331567\pi\)
\(230\) 41.0398 2.70608
\(231\) −2.98828 −0.196615
\(232\) −0.394132 −0.0258760
\(233\) 13.0613 0.855671 0.427836 0.903857i \(-0.359276\pi\)
0.427836 + 0.903857i \(0.359276\pi\)
\(234\) −15.1614 −0.991130
\(235\) 20.0789 1.30980
\(236\) 31.5968 2.05678
\(237\) −11.5133 −0.747870
\(238\) −16.1873 −1.04927
\(239\) −23.4422 −1.51635 −0.758176 0.652050i \(-0.773909\pi\)
−0.758176 + 0.652050i \(0.773909\pi\)
\(240\) 2.56743 0.165727
\(241\) 24.7121 1.59185 0.795923 0.605398i \(-0.206986\pi\)
0.795923 + 0.605398i \(0.206986\pi\)
\(242\) −24.1408 −1.55183
\(243\) 22.3337 1.43271
\(244\) −26.0669 −1.66876
\(245\) 11.0781 0.707756
\(246\) 43.2661 2.75855
\(247\) 8.79358 0.559522
\(248\) 0 0
\(249\) −6.78996 −0.430296
\(250\) 21.6641 1.37016
\(251\) −23.1941 −1.46400 −0.732001 0.681304i \(-0.761413\pi\)
−0.732001 + 0.681304i \(0.761413\pi\)
\(252\) 18.4560 1.16262
\(253\) −5.22251 −0.328336
\(254\) −2.96986 −0.186346
\(255\) −27.8208 −1.74221
\(256\) −18.5239 −1.15774
\(257\) 15.3461 0.957264 0.478632 0.878016i \(-0.341133\pi\)
0.478632 + 0.878016i \(0.341133\pi\)
\(258\) −1.35239 −0.0841960
\(259\) 13.5030 0.839035
\(260\) 15.7491 0.976716
\(261\) −0.446831 −0.0276581
\(262\) −18.5072 −1.14338
\(263\) −6.80588 −0.419668 −0.209834 0.977737i \(-0.567292\pi\)
−0.209834 + 0.977737i \(0.567292\pi\)
\(264\) −5.70230 −0.350952
\(265\) −14.3268 −0.880086
\(266\) −17.1439 −1.05116
\(267\) 5.60566 0.343061
\(268\) 16.0468 0.980216
\(269\) 10.5196 0.641394 0.320697 0.947182i \(-0.396083\pi\)
0.320697 + 0.947182i \(0.396083\pi\)
\(270\) 6.82318 0.415246
\(271\) −1.57714 −0.0958044 −0.0479022 0.998852i \(-0.515254\pi\)
−0.0479022 + 0.998852i \(0.515254\pi\)
\(272\) −1.76981 −0.107310
\(273\) 7.72256 0.467391
\(274\) −38.0206 −2.29691
\(275\) 0.911421 0.0549608
\(276\) 60.1776 3.62227
\(277\) 12.1014 0.727100 0.363550 0.931575i \(-0.381565\pi\)
0.363550 + 0.931575i \(0.381565\pi\)
\(278\) 16.9368 1.01580
\(279\) 0 0
\(280\) −12.2337 −0.731106
\(281\) −21.4727 −1.28096 −0.640478 0.767976i \(-0.721264\pi\)
−0.640478 + 0.767976i \(0.721264\pi\)
\(282\) 47.1535 2.80795
\(283\) −0.688807 −0.0409453 −0.0204726 0.999790i \(-0.506517\pi\)
−0.0204726 + 0.999790i \(0.506517\pi\)
\(284\) −11.3206 −0.671753
\(285\) −29.4649 −1.74535
\(286\) −3.20976 −0.189797
\(287\) −11.8122 −0.697253
\(288\) −17.9542 −1.05796
\(289\) 2.17774 0.128102
\(290\) 0.743367 0.0436520
\(291\) −31.2497 −1.83189
\(292\) 8.95019 0.523770
\(293\) 9.01188 0.526480 0.263240 0.964730i \(-0.415209\pi\)
0.263240 + 0.964730i \(0.415209\pi\)
\(294\) 26.0160 1.51728
\(295\) −23.7447 −1.38247
\(296\) 25.7667 1.49766
\(297\) −0.868282 −0.0503828
\(298\) −14.6803 −0.850408
\(299\) 13.4964 0.780519
\(300\) −10.5021 −0.606338
\(301\) 0.369220 0.0212815
\(302\) −12.7485 −0.733592
\(303\) −18.6746 −1.07283
\(304\) −1.87439 −0.107504
\(305\) 19.5890 1.12166
\(306\) −35.0191 −2.00191
\(307\) −31.3326 −1.78825 −0.894124 0.447819i \(-0.852201\pi\)
−0.894124 + 0.447819i \(0.852201\pi\)
\(308\) 3.90726 0.222637
\(309\) −14.2107 −0.808416
\(310\) 0 0
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) 14.7363 0.834281
\(313\) −21.6687 −1.22479 −0.612394 0.790553i \(-0.709793\pi\)
−0.612394 + 0.790553i \(0.709793\pi\)
\(314\) 18.4475 1.04105
\(315\) −13.8695 −0.781458
\(316\) 15.0540 0.846852
\(317\) 1.01605 0.0570669 0.0285334 0.999593i \(-0.490916\pi\)
0.0285334 + 0.999593i \(0.490916\pi\)
\(318\) −33.6451 −1.88672
\(319\) −0.0945970 −0.00529641
\(320\) 31.8888 1.78264
\(321\) −4.63834 −0.258887
\(322\) −26.3125 −1.46634
\(323\) 20.3110 1.13014
\(324\) −24.5595 −1.36442
\(325\) −2.35537 −0.130652
\(326\) −39.3789 −2.18099
\(327\) −29.9159 −1.65435
\(328\) −22.5403 −1.24458
\(329\) −12.8735 −0.709741
\(330\) 10.7550 0.592044
\(331\) 26.6894 1.46698 0.733492 0.679698i \(-0.237889\pi\)
0.733492 + 0.679698i \(0.237889\pi\)
\(332\) 8.87806 0.487247
\(333\) 29.2119 1.60080
\(334\) −56.2395 −3.07729
\(335\) −12.0590 −0.658854
\(336\) −1.64610 −0.0898020
\(337\) 31.9415 1.73997 0.869983 0.493081i \(-0.164129\pi\)
0.869983 + 0.493081i \(0.164129\pi\)
\(338\) −21.7029 −1.18048
\(339\) −28.1086 −1.52665
\(340\) 36.3765 1.97279
\(341\) 0 0
\(342\) −37.0885 −2.00552
\(343\) −18.3159 −0.988963
\(344\) 0.704552 0.0379869
\(345\) −45.2228 −2.43472
\(346\) 20.7068 1.11321
\(347\) 3.12131 0.167561 0.0837804 0.996484i \(-0.473301\pi\)
0.0837804 + 0.996484i \(0.473301\pi\)
\(348\) 1.09002 0.0584310
\(349\) −22.0265 −1.17905 −0.589525 0.807750i \(-0.700685\pi\)
−0.589525 + 0.807750i \(0.700685\pi\)
\(350\) 4.59201 0.245453
\(351\) 2.24389 0.119770
\(352\) −3.80101 −0.202595
\(353\) 4.93239 0.262525 0.131262 0.991348i \(-0.458097\pi\)
0.131262 + 0.991348i \(0.458097\pi\)
\(354\) −55.7621 −2.96372
\(355\) 8.50730 0.451520
\(356\) −7.32954 −0.388465
\(357\) 17.8372 0.944046
\(358\) −26.0532 −1.37695
\(359\) −0.360860 −0.0190455 −0.00952273 0.999955i \(-0.503031\pi\)
−0.00952273 + 0.999955i \(0.503031\pi\)
\(360\) −26.4660 −1.39488
\(361\) 2.51129 0.132173
\(362\) −34.4769 −1.81206
\(363\) 26.6013 1.39621
\(364\) −10.0975 −0.529251
\(365\) −6.72597 −0.352053
\(366\) 46.0030 2.40462
\(367\) −29.3869 −1.53398 −0.766992 0.641657i \(-0.778247\pi\)
−0.766992 + 0.641657i \(0.778247\pi\)
\(368\) −2.87682 −0.149965
\(369\) −25.5541 −1.33029
\(370\) −48.5981 −2.52650
\(371\) 9.18555 0.476890
\(372\) 0 0
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) −7.41376 −0.383356
\(375\) −23.8723 −1.23276
\(376\) −24.5655 −1.26687
\(377\) 0.244465 0.0125906
\(378\) −4.37466 −0.225008
\(379\) −2.46042 −0.126383 −0.0631917 0.998001i \(-0.520128\pi\)
−0.0631917 + 0.998001i \(0.520128\pi\)
\(380\) 38.5261 1.97635
\(381\) 3.27257 0.167659
\(382\) 5.21715 0.266933
\(383\) −19.1179 −0.976880 −0.488440 0.872598i \(-0.662434\pi\)
−0.488440 + 0.872598i \(0.662434\pi\)
\(384\) 48.5406 2.47708
\(385\) −2.93626 −0.149646
\(386\) 59.2209 3.01427
\(387\) 0.798756 0.0406031
\(388\) 40.8599 2.07435
\(389\) 5.27106 0.267253 0.133627 0.991032i \(-0.457338\pi\)
0.133627 + 0.991032i \(0.457338\pi\)
\(390\) −27.7940 −1.40740
\(391\) 31.1735 1.57651
\(392\) −13.5535 −0.684556
\(393\) 20.3935 1.02872
\(394\) −14.2968 −0.720261
\(395\) −11.3129 −0.569213
\(396\) 8.45282 0.424770
\(397\) 16.9255 0.849467 0.424733 0.905319i \(-0.360368\pi\)
0.424733 + 0.905319i \(0.360368\pi\)
\(398\) −10.5439 −0.528516
\(399\) 18.8913 0.945748
\(400\) 0.502057 0.0251029
\(401\) 38.0397 1.89961 0.949805 0.312843i \(-0.101281\pi\)
0.949805 + 0.312843i \(0.101281\pi\)
\(402\) −28.3195 −1.41245
\(403\) 0 0
\(404\) 24.4175 1.21482
\(405\) 18.4562 0.917095
\(406\) −0.476607 −0.0236536
\(407\) 6.18434 0.306546
\(408\) 34.0373 1.68510
\(409\) 0.498684 0.0246583 0.0123292 0.999924i \(-0.496075\pi\)
0.0123292 + 0.999924i \(0.496075\pi\)
\(410\) 42.5129 2.09956
\(411\) 41.8958 2.06657
\(412\) 18.5808 0.915411
\(413\) 15.2238 0.749114
\(414\) −56.9235 −2.79764
\(415\) −6.67176 −0.327504
\(416\) 9.82289 0.481607
\(417\) −18.6631 −0.913938
\(418\) −7.85186 −0.384047
\(419\) 13.5100 0.660007 0.330003 0.943980i \(-0.392950\pi\)
0.330003 + 0.943980i \(0.392950\pi\)
\(420\) 33.8338 1.65092
\(421\) −30.9151 −1.50671 −0.753355 0.657614i \(-0.771566\pi\)
−0.753355 + 0.657614i \(0.771566\pi\)
\(422\) −42.9587 −2.09120
\(423\) −27.8501 −1.35412
\(424\) 17.5280 0.851237
\(425\) −5.44033 −0.263895
\(426\) 19.9786 0.967967
\(427\) −12.5594 −0.607793
\(428\) 6.06475 0.293151
\(429\) 3.53692 0.170764
\(430\) −1.32885 −0.0640826
\(431\) −12.0548 −0.580659 −0.290330 0.956927i \(-0.593765\pi\)
−0.290330 + 0.956927i \(0.593765\pi\)
\(432\) −0.478294 −0.0230119
\(433\) −32.3919 −1.55665 −0.778327 0.627860i \(-0.783931\pi\)
−0.778327 + 0.627860i \(0.783931\pi\)
\(434\) 0 0
\(435\) −0.819136 −0.0392745
\(436\) 39.1158 1.87331
\(437\) 33.0156 1.57935
\(438\) −15.7953 −0.754730
\(439\) 12.3682 0.590300 0.295150 0.955451i \(-0.404630\pi\)
0.295150 + 0.955451i \(0.404630\pi\)
\(440\) −5.60303 −0.267114
\(441\) −15.3657 −0.731702
\(442\) 19.1592 0.911312
\(443\) −4.72341 −0.224416 −0.112208 0.993685i \(-0.535792\pi\)
−0.112208 + 0.993685i \(0.535792\pi\)
\(444\) −71.2606 −3.38188
\(445\) 5.50807 0.261108
\(446\) 14.3412 0.679074
\(447\) 16.1766 0.765128
\(448\) −20.4454 −0.965953
\(449\) −15.9842 −0.754341 −0.377170 0.926144i \(-0.623103\pi\)
−0.377170 + 0.926144i \(0.623103\pi\)
\(450\) 9.93418 0.468302
\(451\) −5.40997 −0.254746
\(452\) 36.7528 1.72871
\(453\) 14.0479 0.660027
\(454\) −30.1081 −1.41305
\(455\) 7.58813 0.355737
\(456\) 36.0487 1.68814
\(457\) 4.55775 0.213203 0.106601 0.994302i \(-0.466003\pi\)
0.106601 + 0.994302i \(0.466003\pi\)
\(458\) 35.2542 1.64732
\(459\) 5.18283 0.241914
\(460\) 59.1301 2.75695
\(461\) −16.9910 −0.791349 −0.395675 0.918391i \(-0.629489\pi\)
−0.395675 + 0.918391i \(0.629489\pi\)
\(462\) −6.89554 −0.320810
\(463\) 27.4279 1.27468 0.637340 0.770582i \(-0.280035\pi\)
0.637340 + 0.770582i \(0.280035\pi\)
\(464\) −0.0521088 −0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) −22.9105 −1.06017 −0.530086 0.847944i \(-0.677840\pi\)
−0.530086 + 0.847944i \(0.677840\pi\)
\(468\) −21.8445 −1.00976
\(469\) 7.73159 0.357012
\(470\) 46.3327 2.13717
\(471\) −20.3277 −0.936653
\(472\) 29.0503 1.33715
\(473\) 0.169102 0.00777531
\(474\) −26.5673 −1.22028
\(475\) −5.76182 −0.264370
\(476\) −23.3227 −1.06899
\(477\) 19.8717 0.909862
\(478\) −54.0936 −2.47418
\(479\) 9.04705 0.413370 0.206685 0.978407i \(-0.433732\pi\)
0.206685 + 0.978407i \(0.433732\pi\)
\(480\) −32.9138 −1.50230
\(481\) −15.9821 −0.728720
\(482\) 57.0238 2.59736
\(483\) 28.9945 1.31929
\(484\) −34.7820 −1.58100
\(485\) −30.7057 −1.39428
\(486\) 51.5355 2.33770
\(487\) −23.6227 −1.07045 −0.535223 0.844711i \(-0.679772\pi\)
−0.535223 + 0.844711i \(0.679772\pi\)
\(488\) −23.9661 −1.08490
\(489\) 43.3926 1.96228
\(490\) 25.5631 1.15482
\(491\) 9.22692 0.416405 0.208202 0.978086i \(-0.433239\pi\)
0.208202 + 0.978086i \(0.433239\pi\)
\(492\) 62.3377 2.81040
\(493\) 0.564655 0.0254308
\(494\) 20.2914 0.912955
\(495\) −6.35220 −0.285510
\(496\) 0 0
\(497\) −5.45442 −0.244664
\(498\) −15.6680 −0.702101
\(499\) 28.4139 1.27198 0.635992 0.771696i \(-0.280591\pi\)
0.635992 + 0.771696i \(0.280591\pi\)
\(500\) 31.2136 1.39592
\(501\) 61.9718 2.76870
\(502\) −53.5211 −2.38876
\(503\) 18.2781 0.814979 0.407489 0.913210i \(-0.366404\pi\)
0.407489 + 0.913210i \(0.366404\pi\)
\(504\) 16.9686 0.755842
\(505\) −18.3495 −0.816541
\(506\) −12.0511 −0.535736
\(507\) 23.9150 1.06210
\(508\) −4.27897 −0.189849
\(509\) 10.3864 0.460367 0.230184 0.973147i \(-0.426067\pi\)
0.230184 + 0.973147i \(0.426067\pi\)
\(510\) −64.1973 −2.84271
\(511\) 4.31233 0.190766
\(512\) −4.56446 −0.201722
\(513\) 5.48910 0.242350
\(514\) 35.4116 1.56194
\(515\) −13.9633 −0.615295
\(516\) −1.94852 −0.0857787
\(517\) −5.89605 −0.259308
\(518\) 31.1585 1.36903
\(519\) −22.8174 −1.00157
\(520\) 14.4798 0.634981
\(521\) 9.25044 0.405269 0.202635 0.979254i \(-0.435050\pi\)
0.202635 + 0.979254i \(0.435050\pi\)
\(522\) −1.03107 −0.0451289
\(523\) −6.57516 −0.287512 −0.143756 0.989613i \(-0.545918\pi\)
−0.143756 + 0.989613i \(0.545918\pi\)
\(524\) −26.6651 −1.16487
\(525\) −5.06005 −0.220839
\(526\) −15.7047 −0.684759
\(527\) 0 0
\(528\) −0.753909 −0.0328097
\(529\) 27.6725 1.20315
\(530\) −33.0594 −1.43601
\(531\) 32.9346 1.42924
\(532\) −24.7009 −1.07092
\(533\) 13.9809 0.605579
\(534\) 12.9352 0.559761
\(535\) −4.55759 −0.197042
\(536\) 14.7536 0.637257
\(537\) 28.7087 1.23887
\(538\) 24.2744 1.04654
\(539\) −3.25302 −0.140118
\(540\) 9.83083 0.423051
\(541\) −2.20328 −0.0947262 −0.0473631 0.998878i \(-0.515082\pi\)
−0.0473631 + 0.998878i \(0.515082\pi\)
\(542\) −3.63929 −0.156321
\(543\) 37.9909 1.63035
\(544\) 22.6885 0.972760
\(545\) −29.3951 −1.25915
\(546\) 17.8200 0.762627
\(547\) −4.86344 −0.207946 −0.103973 0.994580i \(-0.533156\pi\)
−0.103973 + 0.994580i \(0.533156\pi\)
\(548\) −54.7799 −2.34008
\(549\) −27.1706 −1.15961
\(550\) 2.10313 0.0896777
\(551\) 0.598022 0.0254766
\(552\) 55.3277 2.35491
\(553\) 7.25322 0.308438
\(554\) 27.9242 1.18639
\(555\) 53.5516 2.27314
\(556\) 24.4025 1.03490
\(557\) 11.0363 0.467623 0.233811 0.972282i \(-0.424880\pi\)
0.233811 + 0.972282i \(0.424880\pi\)
\(558\) 0 0
\(559\) −0.437007 −0.0184834
\(560\) −1.61744 −0.0683494
\(561\) 8.16941 0.344913
\(562\) −49.5489 −2.09010
\(563\) −11.1924 −0.471704 −0.235852 0.971789i \(-0.575788\pi\)
−0.235852 + 0.971789i \(0.575788\pi\)
\(564\) 67.9387 2.86074
\(565\) −27.6193 −1.16195
\(566\) −1.58944 −0.0668091
\(567\) −11.8331 −0.496944
\(568\) −10.4082 −0.436720
\(569\) −46.9220 −1.96707 −0.983536 0.180713i \(-0.942160\pi\)
−0.983536 + 0.180713i \(0.942160\pi\)
\(570\) −67.9910 −2.84783
\(571\) −20.4597 −0.856210 −0.428105 0.903729i \(-0.640819\pi\)
−0.428105 + 0.903729i \(0.640819\pi\)
\(572\) −4.62461 −0.193365
\(573\) −5.74892 −0.240164
\(574\) −27.2570 −1.13769
\(575\) −8.84326 −0.368789
\(576\) −44.2308 −1.84295
\(577\) 3.64835 0.151883 0.0759413 0.997112i \(-0.475804\pi\)
0.0759413 + 0.997112i \(0.475804\pi\)
\(578\) 5.02520 0.209021
\(579\) −65.2571 −2.71199
\(580\) 1.07104 0.0444726
\(581\) 4.27758 0.177464
\(582\) −72.1096 −2.98904
\(583\) 4.20696 0.174235
\(584\) 8.22887 0.340513
\(585\) 16.4159 0.678713
\(586\) 20.7952 0.859040
\(587\) −22.8726 −0.944053 −0.472027 0.881584i \(-0.656477\pi\)
−0.472027 + 0.881584i \(0.656477\pi\)
\(588\) 37.4838 1.54580
\(589\) 0 0
\(590\) −54.7914 −2.25573
\(591\) 15.7540 0.648032
\(592\) 3.40665 0.140012
\(593\) −19.4598 −0.799117 −0.399558 0.916708i \(-0.630837\pi\)
−0.399558 + 0.916708i \(0.630837\pi\)
\(594\) −2.00358 −0.0822081
\(595\) 17.5267 0.718525
\(596\) −21.1514 −0.866394
\(597\) 11.6185 0.475515
\(598\) 31.1434 1.27355
\(599\) 35.1718 1.43708 0.718541 0.695484i \(-0.244810\pi\)
0.718541 + 0.695484i \(0.244810\pi\)
\(600\) −9.65569 −0.394192
\(601\) 5.88806 0.240179 0.120089 0.992763i \(-0.461682\pi\)
0.120089 + 0.992763i \(0.461682\pi\)
\(602\) 0.851984 0.0347243
\(603\) 16.7262 0.681145
\(604\) −18.3680 −0.747382
\(605\) 26.1383 1.06267
\(606\) −43.0921 −1.75050
\(607\) 38.8848 1.57829 0.789143 0.614209i \(-0.210525\pi\)
0.789143 + 0.614209i \(0.210525\pi\)
\(608\) 24.0292 0.974513
\(609\) 0.525186 0.0212816
\(610\) 45.2022 1.83018
\(611\) 15.2371 0.616425
\(612\) −50.4554 −2.03954
\(613\) −45.6024 −1.84186 −0.920931 0.389725i \(-0.872570\pi\)
−0.920931 + 0.389725i \(0.872570\pi\)
\(614\) −72.3009 −2.91783
\(615\) −46.8461 −1.88902
\(616\) 3.59236 0.144740
\(617\) −6.62648 −0.266772 −0.133386 0.991064i \(-0.542585\pi\)
−0.133386 + 0.991064i \(0.542585\pi\)
\(618\) −32.7915 −1.31907
\(619\) 41.5360 1.66947 0.834736 0.550650i \(-0.185620\pi\)
0.834736 + 0.550650i \(0.185620\pi\)
\(620\) 0 0
\(621\) 8.42469 0.338071
\(622\) −40.8754 −1.63895
\(623\) −3.53148 −0.141486
\(624\) 1.94831 0.0779950
\(625\) −29.6682 −1.18673
\(626\) −50.0011 −1.99845
\(627\) 8.65218 0.345535
\(628\) 26.5791 1.06062
\(629\) −36.9147 −1.47189
\(630\) −32.0042 −1.27508
\(631\) 11.1447 0.443664 0.221832 0.975085i \(-0.428796\pi\)
0.221832 + 0.975085i \(0.428796\pi\)
\(632\) 13.8407 0.550554
\(633\) 47.3373 1.88149
\(634\) 2.34455 0.0931141
\(635\) 3.21560 0.127607
\(636\) −48.4758 −1.92219
\(637\) 8.40673 0.333087
\(638\) −0.218285 −0.00864199
\(639\) −11.7999 −0.466797
\(640\) 47.6956 1.88533
\(641\) 17.5533 0.693314 0.346657 0.937992i \(-0.387317\pi\)
0.346657 + 0.937992i \(0.387317\pi\)
\(642\) −10.7031 −0.422417
\(643\) −2.19605 −0.0866038 −0.0433019 0.999062i \(-0.513788\pi\)
−0.0433019 + 0.999062i \(0.513788\pi\)
\(644\) −37.9110 −1.49390
\(645\) 1.46429 0.0576563
\(646\) 46.8682 1.84401
\(647\) −32.4446 −1.27553 −0.637764 0.770232i \(-0.720140\pi\)
−0.637764 + 0.770232i \(0.720140\pi\)
\(648\) −22.5802 −0.887033
\(649\) 6.97247 0.273693
\(650\) −5.43508 −0.213181
\(651\) 0 0
\(652\) −56.7370 −2.22199
\(653\) 16.4900 0.645302 0.322651 0.946518i \(-0.395426\pi\)
0.322651 + 0.946518i \(0.395426\pi\)
\(654\) −69.0317 −2.69935
\(655\) 20.0385 0.782970
\(656\) −2.98009 −0.116353
\(657\) 9.32914 0.363964
\(658\) −29.7060 −1.15806
\(659\) −19.7414 −0.769015 −0.384508 0.923122i \(-0.625629\pi\)
−0.384508 + 0.923122i \(0.625629\pi\)
\(660\) 15.4958 0.603173
\(661\) 11.7808 0.458221 0.229110 0.973400i \(-0.426418\pi\)
0.229110 + 0.973400i \(0.426418\pi\)
\(662\) 61.5866 2.39363
\(663\) −21.1121 −0.819925
\(664\) 8.16255 0.316768
\(665\) 18.5624 0.719820
\(666\) 67.4072 2.61198
\(667\) 0.917847 0.0355392
\(668\) −81.0298 −3.13514
\(669\) −15.8029 −0.610976
\(670\) −27.8265 −1.07503
\(671\) −5.75219 −0.222061
\(672\) 21.1026 0.814049
\(673\) 50.3821 1.94209 0.971044 0.238901i \(-0.0767871\pi\)
0.971044 + 0.238901i \(0.0767871\pi\)
\(674\) 73.7060 2.83905
\(675\) −1.47026 −0.0565903
\(676\) −31.2695 −1.20267
\(677\) −3.97995 −0.152962 −0.0764810 0.997071i \(-0.524368\pi\)
−0.0764810 + 0.997071i \(0.524368\pi\)
\(678\) −64.8614 −2.49099
\(679\) 19.6869 0.755513
\(680\) 33.4448 1.28255
\(681\) 33.1770 1.27134
\(682\) 0 0
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) −53.4370 −2.04321
\(685\) 41.1665 1.57289
\(686\) −42.2643 −1.61366
\(687\) −38.8476 −1.48213
\(688\) 0.0931499 0.00355130
\(689\) −10.8720 −0.414189
\(690\) −104.353 −3.97265
\(691\) 9.19553 0.349815 0.174907 0.984585i \(-0.444037\pi\)
0.174907 + 0.984585i \(0.444037\pi\)
\(692\) 29.8344 1.13413
\(693\) 4.07269 0.154709
\(694\) 7.20251 0.273404
\(695\) −18.3382 −0.695609
\(696\) 1.00217 0.0379871
\(697\) 32.2924 1.22316
\(698\) −50.8266 −1.92382
\(699\) −33.2112 −1.25616
\(700\) 6.61615 0.250067
\(701\) −40.5543 −1.53172 −0.765858 0.643010i \(-0.777685\pi\)
−0.765858 + 0.643010i \(0.777685\pi\)
\(702\) 5.17783 0.195424
\(703\) −39.0961 −1.47454
\(704\) −9.36393 −0.352916
\(705\) −51.0552 −1.92285
\(706\) 11.3816 0.428353
\(707\) 11.7647 0.442457
\(708\) −80.3420 −3.01944
\(709\) −37.2861 −1.40031 −0.700154 0.713992i \(-0.746885\pi\)
−0.700154 + 0.713992i \(0.746885\pi\)
\(710\) 19.6308 0.736731
\(711\) 15.6913 0.588471
\(712\) −6.73883 −0.252548
\(713\) 0 0
\(714\) 41.1599 1.54037
\(715\) 3.47535 0.129971
\(716\) −37.5374 −1.40284
\(717\) 59.6071 2.22607
\(718\) −0.832694 −0.0310759
\(719\) −18.5799 −0.692912 −0.346456 0.938066i \(-0.612615\pi\)
−0.346456 + 0.938066i \(0.612615\pi\)
\(720\) −3.49911 −0.130404
\(721\) 8.95250 0.333409
\(722\) 5.79486 0.215662
\(723\) −62.8360 −2.33690
\(724\) −49.6742 −1.84613
\(725\) −0.160181 −0.00594897
\(726\) 61.3833 2.27815
\(727\) 16.3772 0.607396 0.303698 0.952768i \(-0.401779\pi\)
0.303698 + 0.952768i \(0.401779\pi\)
\(728\) −9.28367 −0.344076
\(729\) −34.6273 −1.28249
\(730\) −15.5203 −0.574434
\(731\) −1.00938 −0.0373332
\(732\) 66.2810 2.44982
\(733\) −1.15134 −0.0425256 −0.0212628 0.999774i \(-0.506769\pi\)
−0.0212628 + 0.999774i \(0.506769\pi\)
\(734\) −67.8111 −2.50295
\(735\) −28.1686 −1.03902
\(736\) 36.8801 1.35942
\(737\) 3.54105 0.130436
\(738\) −58.9668 −2.17060
\(739\) −20.7158 −0.762043 −0.381022 0.924566i \(-0.624428\pi\)
−0.381022 + 0.924566i \(0.624428\pi\)
\(740\) −70.0201 −2.57399
\(741\) −22.3597 −0.821403
\(742\) 21.1959 0.778126
\(743\) −35.2367 −1.29271 −0.646354 0.763038i \(-0.723707\pi\)
−0.646354 + 0.763038i \(0.723707\pi\)
\(744\) 0 0
\(745\) 15.8950 0.582348
\(746\) 40.9087 1.49778
\(747\) 9.25395 0.338584
\(748\) −10.6817 −0.390563
\(749\) 2.92208 0.106771
\(750\) −55.0859 −2.01145
\(751\) −43.1459 −1.57441 −0.787207 0.616688i \(-0.788474\pi\)
−0.787207 + 0.616688i \(0.788474\pi\)
\(752\) −3.24784 −0.118437
\(753\) 58.9763 2.14922
\(754\) 0.564110 0.0205437
\(755\) 13.8033 0.502354
\(756\) −6.30300 −0.229238
\(757\) −27.3386 −0.993637 −0.496819 0.867854i \(-0.665499\pi\)
−0.496819 + 0.867854i \(0.665499\pi\)
\(758\) −5.67749 −0.206216
\(759\) 13.2794 0.482011
\(760\) 35.4212 1.28486
\(761\) 17.1920 0.623208 0.311604 0.950212i \(-0.399134\pi\)
0.311604 + 0.950212i \(0.399134\pi\)
\(762\) 7.55154 0.273563
\(763\) 18.8466 0.682291
\(764\) 7.51686 0.271951
\(765\) 37.9167 1.37088
\(766\) −44.1151 −1.59394
\(767\) −18.0188 −0.650622
\(768\) 47.1012 1.69962
\(769\) 14.0567 0.506899 0.253450 0.967349i \(-0.418435\pi\)
0.253450 + 0.967349i \(0.418435\pi\)
\(770\) −6.77550 −0.244172
\(771\) −39.0209 −1.40530
\(772\) 85.3254 3.07093
\(773\) −22.2368 −0.799803 −0.399902 0.916558i \(-0.630956\pi\)
−0.399902 + 0.916558i \(0.630956\pi\)
\(774\) 1.84315 0.0662507
\(775\) 0 0
\(776\) 37.5668 1.34857
\(777\) −34.3344 −1.23174
\(778\) 12.1631 0.436069
\(779\) 34.2007 1.22537
\(780\) −40.0455 −1.43386
\(781\) −2.49811 −0.0893895
\(782\) 71.9336 2.57234
\(783\) 0.152599 0.00545345
\(784\) −1.79193 −0.0639975
\(785\) −19.9739 −0.712898
\(786\) 47.0587 1.67853
\(787\) 32.0338 1.14188 0.570941 0.820991i \(-0.306578\pi\)
0.570941 + 0.820991i \(0.306578\pi\)
\(788\) −20.5988 −0.733800
\(789\) 17.3055 0.616091
\(790\) −26.1048 −0.928767
\(791\) 17.7080 0.629625
\(792\) 7.77158 0.276151
\(793\) 14.8653 0.527881
\(794\) 39.0560 1.38605
\(795\) 36.4290 1.29200
\(796\) −15.1916 −0.538451
\(797\) 26.0493 0.922712 0.461356 0.887215i \(-0.347363\pi\)
0.461356 + 0.887215i \(0.347363\pi\)
\(798\) 43.5922 1.54315
\(799\) 35.1939 1.24507
\(800\) −6.43625 −0.227556
\(801\) −7.63987 −0.269942
\(802\) 87.7775 3.09953
\(803\) 1.97504 0.0696976
\(804\) −40.8027 −1.43900
\(805\) 28.4897 1.00413
\(806\) 0 0
\(807\) −26.7486 −0.941594
\(808\) 22.4496 0.789775
\(809\) −8.72941 −0.306910 −0.153455 0.988156i \(-0.549040\pi\)
−0.153455 + 0.988156i \(0.549040\pi\)
\(810\) 42.5881 1.49639
\(811\) −50.0784 −1.75849 −0.879245 0.476369i \(-0.841953\pi\)
−0.879245 + 0.476369i \(0.841953\pi\)
\(812\) −0.686695 −0.0240983
\(813\) 4.01023 0.140645
\(814\) 14.2705 0.500182
\(815\) 42.6372 1.49352
\(816\) 4.50013 0.157536
\(817\) −1.06903 −0.0374005
\(818\) 1.15073 0.0402342
\(819\) −10.5250 −0.367773
\(820\) 61.2525 2.13903
\(821\) −50.7831 −1.77234 −0.886171 0.463359i \(-0.846644\pi\)
−0.886171 + 0.463359i \(0.846644\pi\)
\(822\) 96.6758 3.37195
\(823\) −6.32920 −0.220622 −0.110311 0.993897i \(-0.535185\pi\)
−0.110311 + 0.993897i \(0.535185\pi\)
\(824\) 17.0833 0.595126
\(825\) −2.31749 −0.0806847
\(826\) 35.1293 1.22231
\(827\) 3.69745 0.128573 0.0642865 0.997931i \(-0.479523\pi\)
0.0642865 + 0.997931i \(0.479523\pi\)
\(828\) −82.0153 −2.85023
\(829\) 26.0416 0.904461 0.452230 0.891901i \(-0.350628\pi\)
0.452230 + 0.891901i \(0.350628\pi\)
\(830\) −15.3953 −0.534377
\(831\) −30.7704 −1.06741
\(832\) 24.1990 0.838951
\(833\) 19.4175 0.672776
\(834\) −43.0657 −1.49124
\(835\) 60.8930 2.10729
\(836\) −11.3130 −0.391267
\(837\) 0 0
\(838\) 31.1747 1.07691
\(839\) 7.49300 0.258687 0.129343 0.991600i \(-0.458713\pi\)
0.129343 + 0.991600i \(0.458713\pi\)
\(840\) 31.1070 1.07329
\(841\) −28.9834 −0.999427
\(842\) −71.3374 −2.45845
\(843\) 54.5992 1.88050
\(844\) −61.8948 −2.13051
\(845\) 23.4987 0.808380
\(846\) −64.2649 −2.20947
\(847\) −16.7584 −0.575827
\(848\) 2.31741 0.0795801
\(849\) 1.75144 0.0601094
\(850\) −12.5537 −0.430588
\(851\) −60.0049 −2.05694
\(852\) 28.7851 0.986163
\(853\) −43.5869 −1.49239 −0.746194 0.665728i \(-0.768121\pi\)
−0.746194 + 0.665728i \(0.768121\pi\)
\(854\) −28.9812 −0.991717
\(855\) 40.1573 1.37335
\(856\) 5.57597 0.190583
\(857\) 39.2228 1.33982 0.669912 0.742440i \(-0.266332\pi\)
0.669912 + 0.742440i \(0.266332\pi\)
\(858\) 8.16153 0.278630
\(859\) −18.2013 −0.621020 −0.310510 0.950570i \(-0.600500\pi\)
−0.310510 + 0.950570i \(0.600500\pi\)
\(860\) −1.91460 −0.0652872
\(861\) 30.0352 1.02360
\(862\) −27.8168 −0.947443
\(863\) 44.9477 1.53004 0.765018 0.644009i \(-0.222730\pi\)
0.765018 + 0.644009i \(0.222730\pi\)
\(864\) 6.13161 0.208602
\(865\) −22.4202 −0.762309
\(866\) −74.7451 −2.53994
\(867\) −5.53740 −0.188060
\(868\) 0 0
\(869\) 3.32196 0.112690
\(870\) −1.89018 −0.0640830
\(871\) −9.15108 −0.310072
\(872\) 35.9633 1.21787
\(873\) 42.5899 1.44145
\(874\) 76.1844 2.57698
\(875\) 15.0392 0.508417
\(876\) −22.7579 −0.768917
\(877\) −42.6511 −1.44022 −0.720112 0.693858i \(-0.755910\pi\)
−0.720112 + 0.693858i \(0.755910\pi\)
\(878\) 28.5399 0.963173
\(879\) −22.9147 −0.772894
\(880\) −0.740785 −0.0249718
\(881\) −8.91652 −0.300405 −0.150203 0.988655i \(-0.547993\pi\)
−0.150203 + 0.988655i \(0.547993\pi\)
\(882\) −35.4568 −1.19389
\(883\) 47.0683 1.58398 0.791988 0.610537i \(-0.209046\pi\)
0.791988 + 0.610537i \(0.209046\pi\)
\(884\) 27.6046 0.928443
\(885\) 60.3761 2.02952
\(886\) −10.8994 −0.366172
\(887\) 3.15657 0.105987 0.0529936 0.998595i \(-0.483124\pi\)
0.0529936 + 0.998595i \(0.483124\pi\)
\(888\) −65.5175 −2.19862
\(889\) −2.06167 −0.0691462
\(890\) 12.7100 0.426041
\(891\) −5.41954 −0.181561
\(892\) 20.6627 0.691839
\(893\) 37.2736 1.24731
\(894\) 37.3280 1.24843
\(895\) 28.2089 0.942920
\(896\) −30.5798 −1.02160
\(897\) −34.3177 −1.14583
\(898\) −36.8840 −1.23083
\(899\) 0 0
\(900\) 14.3131 0.477105
\(901\) −25.1116 −0.836589
\(902\) −12.4836 −0.415660
\(903\) −0.938824 −0.0312421
\(904\) 33.7908 1.12386
\(905\) 37.3296 1.24088
\(906\) 32.4158 1.07694
\(907\) 26.9632 0.895297 0.447649 0.894210i \(-0.352262\pi\)
0.447649 + 0.894210i \(0.352262\pi\)
\(908\) −43.3797 −1.43961
\(909\) 25.4513 0.844168
\(910\) 17.5098 0.580444
\(911\) 5.07802 0.168242 0.0841212 0.996456i \(-0.473192\pi\)
0.0841212 + 0.996456i \(0.473192\pi\)
\(912\) 4.76606 0.157820
\(913\) 1.95912 0.0648374
\(914\) 10.5171 0.347876
\(915\) −49.8095 −1.64665
\(916\) 50.7942 1.67829
\(917\) −12.8476 −0.424266
\(918\) 11.9595 0.394723
\(919\) −49.2770 −1.62550 −0.812749 0.582615i \(-0.802030\pi\)
−0.812749 + 0.582615i \(0.802030\pi\)
\(920\) 54.3646 1.79235
\(921\) 79.6703 2.62522
\(922\) −39.2072 −1.29122
\(923\) 6.45583 0.212496
\(924\) −9.93508 −0.326840
\(925\) 10.4719 0.344315
\(926\) 63.2905 2.07986
\(927\) 19.3675 0.636113
\(928\) 0.668022 0.0219289
\(929\) −39.9606 −1.31107 −0.655533 0.755167i \(-0.727556\pi\)
−0.655533 + 0.755167i \(0.727556\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) 43.4245 1.42242
\(933\) 45.0417 1.47460
\(934\) −52.8666 −1.72985
\(935\) 8.02720 0.262517
\(936\) −20.0840 −0.656465
\(937\) 45.0893 1.47300 0.736502 0.676436i \(-0.236476\pi\)
0.736502 + 0.676436i \(0.236476\pi\)
\(938\) 17.8409 0.582525
\(939\) 55.0975 1.79804
\(940\) 66.7560 2.17734
\(941\) 50.1923 1.63622 0.818112 0.575060i \(-0.195021\pi\)
0.818112 + 0.575060i \(0.195021\pi\)
\(942\) −46.9068 −1.52831
\(943\) 52.4914 1.70936
\(944\) 3.84079 0.125007
\(945\) 4.73663 0.154083
\(946\) 0.390207 0.0126867
\(947\) 30.3259 0.985461 0.492730 0.870182i \(-0.335999\pi\)
0.492730 + 0.870182i \(0.335999\pi\)
\(948\) −38.2781 −1.24321
\(949\) −5.10405 −0.165685
\(950\) −13.2955 −0.431365
\(951\) −2.58353 −0.0837766
\(952\) −21.4430 −0.694972
\(953\) −35.4775 −1.14923 −0.574614 0.818425i \(-0.694848\pi\)
−0.574614 + 0.818425i \(0.694848\pi\)
\(954\) 45.8545 1.48459
\(955\) −5.64884 −0.182792
\(956\) −77.9379 −2.52069
\(957\) 0.240534 0.00777536
\(958\) 20.8763 0.674483
\(959\) −26.3938 −0.852299
\(960\) −81.0843 −2.61698
\(961\) 0 0
\(962\) −36.8791 −1.18903
\(963\) 6.32153 0.203708
\(964\) 82.1598 2.64619
\(965\) −64.1211 −2.06413
\(966\) 66.9055 2.15265
\(967\) −35.4443 −1.13981 −0.569906 0.821710i \(-0.693021\pi\)
−0.569906 + 0.821710i \(0.693021\pi\)
\(968\) −31.9788 −1.02784
\(969\) −51.6453 −1.65909
\(970\) −70.8543 −2.27499
\(971\) −40.0972 −1.28678 −0.643391 0.765538i \(-0.722473\pi\)
−0.643391 + 0.765538i \(0.722473\pi\)
\(972\) 74.2523 2.38164
\(973\) 11.7575 0.376928
\(974\) −54.5099 −1.74661
\(975\) 5.98905 0.191803
\(976\) −3.16860 −0.101424
\(977\) −38.6708 −1.23719 −0.618595 0.785710i \(-0.712298\pi\)
−0.618595 + 0.785710i \(0.712298\pi\)
\(978\) 100.130 3.20179
\(979\) −1.61741 −0.0516926
\(980\) 36.8312 1.17653
\(981\) 40.7720 1.30175
\(982\) 21.2914 0.679434
\(983\) −21.5796 −0.688282 −0.344141 0.938918i \(-0.611830\pi\)
−0.344141 + 0.938918i \(0.611830\pi\)
\(984\) 57.3137 1.82710
\(985\) 15.4797 0.493225
\(986\) 1.30296 0.0414946
\(987\) 32.7338 1.04193
\(988\) 29.2359 0.930116
\(989\) −1.64075 −0.0521727
\(990\) −14.6579 −0.465858
\(991\) 46.8764 1.48908 0.744538 0.667580i \(-0.232670\pi\)
0.744538 + 0.667580i \(0.232670\pi\)
\(992\) 0 0
\(993\) −67.8639 −2.15360
\(994\) −12.5862 −0.399211
\(995\) 11.4163 0.361921
\(996\) −22.5744 −0.715299
\(997\) 44.5389 1.41056 0.705281 0.708928i \(-0.250821\pi\)
0.705281 + 0.708928i \(0.250821\pi\)
\(998\) 65.5659 2.07545
\(999\) −9.97628 −0.315636
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.a.i.1.8 8
3.2 odd 2 8649.2.a.bf.1.1 8
31.2 even 5 961.2.d.p.531.4 16
31.3 odd 30 961.2.g.m.846.2 16
31.4 even 5 961.2.d.o.388.1 16
31.5 even 3 961.2.c.j.521.8 16
31.6 odd 6 961.2.c.i.439.8 16
31.7 even 15 31.2.g.a.18.1 16
31.8 even 5 961.2.d.o.374.1 16
31.9 even 15 31.2.g.a.19.1 yes 16
31.10 even 15 961.2.g.s.844.2 16
31.11 odd 30 961.2.g.j.338.1 16
31.12 odd 30 961.2.g.n.547.2 16
31.13 odd 30 961.2.g.n.448.2 16
31.14 even 15 961.2.g.k.816.1 16
31.15 odd 10 961.2.d.q.628.4 16
31.16 even 5 961.2.d.p.628.4 16
31.17 odd 30 961.2.g.j.816.1 16
31.18 even 15 961.2.g.t.448.2 16
31.19 even 15 961.2.g.t.547.2 16
31.20 even 15 961.2.g.k.338.1 16
31.21 odd 30 961.2.g.m.844.2 16
31.22 odd 30 961.2.g.l.732.1 16
31.23 odd 10 961.2.d.n.374.1 16
31.24 odd 30 961.2.g.l.235.1 16
31.25 even 3 961.2.c.j.439.8 16
31.26 odd 6 961.2.c.i.521.8 16
31.27 odd 10 961.2.d.n.388.1 16
31.28 even 15 961.2.g.s.846.2 16
31.29 odd 10 961.2.d.q.531.4 16
31.30 odd 2 961.2.a.j.1.8 8
93.38 odd 30 279.2.y.c.235.2 16
93.71 odd 30 279.2.y.c.19.2 16
93.92 even 2 8649.2.a.be.1.1 8
124.7 odd 30 496.2.bg.c.49.2 16
124.71 odd 30 496.2.bg.c.81.2 16
155.7 odd 60 775.2.ck.a.49.1 32
155.9 even 30 775.2.bl.a.701.2 16
155.38 odd 60 775.2.ck.a.49.4 32
155.69 even 30 775.2.bl.a.576.2 16
155.102 odd 60 775.2.ck.a.174.4 32
155.133 odd 60 775.2.ck.a.174.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 31.7 even 15
31.2.g.a.19.1 yes 16 31.9 even 15
279.2.y.c.19.2 16 93.71 odd 30
279.2.y.c.235.2 16 93.38 odd 30
496.2.bg.c.49.2 16 124.7 odd 30
496.2.bg.c.81.2 16 124.71 odd 30
775.2.bl.a.576.2 16 155.69 even 30
775.2.bl.a.701.2 16 155.9 even 30
775.2.ck.a.49.1 32 155.7 odd 60
775.2.ck.a.49.4 32 155.38 odd 60
775.2.ck.a.174.1 32 155.133 odd 60
775.2.ck.a.174.4 32 155.102 odd 60
961.2.a.i.1.8 8 1.1 even 1 trivial
961.2.a.j.1.8 8 31.30 odd 2
961.2.c.i.439.8 16 31.6 odd 6
961.2.c.i.521.8 16 31.26 odd 6
961.2.c.j.439.8 16 31.25 even 3
961.2.c.j.521.8 16 31.5 even 3
961.2.d.n.374.1 16 31.23 odd 10
961.2.d.n.388.1 16 31.27 odd 10
961.2.d.o.374.1 16 31.8 even 5
961.2.d.o.388.1 16 31.4 even 5
961.2.d.p.531.4 16 31.2 even 5
961.2.d.p.628.4 16 31.16 even 5
961.2.d.q.531.4 16 31.29 odd 10
961.2.d.q.628.4 16 31.15 odd 10
961.2.g.j.338.1 16 31.11 odd 30
961.2.g.j.816.1 16 31.17 odd 30
961.2.g.k.338.1 16 31.20 even 15
961.2.g.k.816.1 16 31.14 even 15
961.2.g.l.235.1 16 31.24 odd 30
961.2.g.l.732.1 16 31.22 odd 30
961.2.g.m.844.2 16 31.21 odd 30
961.2.g.m.846.2 16 31.3 odd 30
961.2.g.n.448.2 16 31.13 odd 30
961.2.g.n.547.2 16 31.12 odd 30
961.2.g.s.844.2 16 31.10 even 15
961.2.g.s.846.2 16 31.28 even 15
961.2.g.t.448.2 16 31.18 even 15
961.2.g.t.547.2 16 31.19 even 15
8649.2.a.be.1.1 8 93.92 even 2
8649.2.a.bf.1.1 8 3.2 odd 2