Properties

Label 775.2.ck.a.49.4
Level $775$
Weight $2$
Character 775.49
Analytic conductor $6.188$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(49,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.ck (of order \(30\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{30})\)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{30}]$

Embedding invariants

Embedding label 49.4
Character \(\chi\) \(=\) 775.49
Dual form 775.2.ck.a.174.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35633 + 1.86683i) q^{2} +(-1.03422 - 2.32289i) q^{3} +(-1.02738 + 3.16196i) q^{4} +(2.93370 - 5.08132i) q^{6} +(1.19043 - 1.07187i) q^{7} +(-2.90713 + 0.944583i) q^{8} +(-2.31884 + 2.57533i) q^{9} +(-0.717625 + 0.152536i) q^{11} +(8.40743 - 0.883657i) q^{12} +(1.88559 + 0.198183i) q^{13} +(3.61560 + 0.768520i) q^{14} +(-0.326952 - 0.237545i) q^{16} +(0.910495 - 4.28354i) q^{17} +(-7.95280 - 0.835873i) q^{18} +(-0.484806 - 4.61262i) q^{19} +(-3.72099 - 1.65669i) q^{21} +(-1.25809 - 1.13279i) q^{22} +(6.77006 - 2.19973i) q^{23} +(5.20077 + 5.77604i) q^{24} +(2.18751 + 3.78887i) q^{26} +(1.12557 + 0.365721i) q^{27} +(2.16617 + 4.86530i) q^{28} +(-0.104314 + 0.0757884i) q^{29} +(4.81795 - 2.79058i) q^{31} +5.18091i q^{32} +(1.09651 + 1.50921i) q^{33} +(9.23157 - 4.11016i) q^{34} +(-5.76075 - 9.97791i) q^{36} +(7.30014 + 4.21474i) q^{37} +(7.95341 - 7.16128i) q^{38} +(-1.48975 - 4.58499i) q^{39} +(-6.73647 - 2.99927i) q^{41} +(-1.95413 - 9.19348i) q^{42} +(0.229229 - 0.0240929i) q^{43} +(0.254963 - 2.42581i) q^{44} +(13.2889 + 9.65498i) q^{46} +(4.72375 - 6.50168i) q^{47} +(-0.213651 + 1.00515i) q^{48} +(-0.463478 + 4.40970i) q^{49} +(-10.8919 + 2.31514i) q^{51} +(-2.56387 + 5.75854i) q^{52} +(4.26137 + 3.83695i) q^{53} +(0.843912 + 2.59729i) q^{54} +(-2.44826 + 4.24051i) q^{56} +(-10.2132 + 5.89661i) q^{57} +(-0.282968 - 0.0919419i) q^{58} +(-8.68208 + 3.86551i) q^{59} -7.84044 q^{61} +(11.7443 + 5.20934i) q^{62} +5.55122i q^{63} +(-10.3258 + 7.50212i) q^{64} +(-1.33021 + 4.09397i) q^{66} +(-4.17994 + 2.41329i) q^{67} +(12.6090 + 7.27978i) q^{68} +(-12.1115 - 13.4511i) q^{69} +(-2.27840 + 2.53042i) q^{71} +(4.30854 - 9.67714i) q^{72} +(-0.559708 - 2.63322i) q^{73} +(2.03321 + 19.3447i) q^{74} +(15.0830 + 3.20599i) q^{76} +(-0.690782 + 0.950780i) q^{77} +(6.53879 - 8.99987i) q^{78} +(4.42900 + 0.941413i) q^{79} +(0.772154 + 7.34656i) q^{81} +(-3.53775 - 16.6438i) q^{82} +(-1.08613 + 2.43949i) q^{83} +(9.06128 - 10.0636i) q^{84} +(0.355888 + 0.395253i) q^{86} +(0.283932 + 0.163928i) q^{87} +(1.94214 - 1.12130i) q^{88} +(0.681255 - 2.09669i) q^{89} +(2.45708 - 1.78518i) q^{91} +23.6666i q^{92} +(-11.4650 - 8.30552i) q^{93} +18.5445 q^{94} +(12.0347 - 5.35820i) q^{96} +(-11.6884 - 3.79778i) q^{97} +(-8.86077 + 5.11577i) q^{98} +(1.27122 - 2.20182i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 28 q^{4} + 22 q^{6} + 20 q^{9} - 14 q^{11} + 12 q^{14} - 4 q^{16} - 32 q^{19} + 18 q^{21} + 40 q^{24} + 18 q^{26} + 28 q^{29} + 30 q^{31} + 64 q^{34} + 2 q^{36} + 6 q^{39} - 16 q^{41} - 78 q^{44}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{13}{15}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35633 + 1.86683i 0.959070 + 1.32005i 0.947379 + 0.320115i \(0.103722\pi\)
0.0116917 + 0.999932i \(0.496278\pi\)
\(3\) −1.03422 2.32289i −0.597107 1.34112i −0.918966 0.394336i \(-0.870975\pi\)
0.321860 0.946787i \(-0.395692\pi\)
\(4\) −1.02738 + 3.16196i −0.513691 + 1.58098i
\(5\) 0 0
\(6\) 2.93370 5.08132i 1.19768 2.07444i
\(7\) 1.19043 1.07187i 0.449939 0.405127i −0.412764 0.910838i \(-0.635436\pi\)
0.862703 + 0.505711i \(0.168770\pi\)
\(8\) −2.90713 + 0.944583i −1.02782 + 0.333960i
\(9\) −2.31884 + 2.57533i −0.772945 + 0.858443i
\(10\) 0 0
\(11\) −0.717625 + 0.152536i −0.216372 + 0.0459913i −0.314822 0.949151i \(-0.601945\pi\)
0.0984501 + 0.995142i \(0.468612\pi\)
\(12\) 8.40743 0.883657i 2.42702 0.255090i
\(13\) 1.88559 + 0.198183i 0.522968 + 0.0549662i 0.362335 0.932048i \(-0.381980\pi\)
0.160633 + 0.987014i \(0.448646\pi\)
\(14\) 3.61560 + 0.768520i 0.966310 + 0.205396i
\(15\) 0 0
\(16\) −0.326952 0.237545i −0.0817381 0.0593862i
\(17\) 0.910495 4.28354i 0.220828 1.03891i −0.718404 0.695626i \(-0.755127\pi\)
0.939231 0.343285i \(-0.111540\pi\)
\(18\) −7.95280 0.835873i −1.87449 0.197017i
\(19\) −0.484806 4.61262i −0.111222 1.05821i −0.897706 0.440596i \(-0.854767\pi\)
0.786483 0.617611i \(-0.211900\pi\)
\(20\) 0 0
\(21\) −3.72099 1.65669i −0.811987 0.361520i
\(22\) −1.25809 1.13279i −0.268227 0.241512i
\(23\) 6.77006 2.19973i 1.41166 0.458675i 0.498714 0.866766i \(-0.333806\pi\)
0.912941 + 0.408092i \(0.133806\pi\)
\(24\) 5.20077 + 5.77604i 1.06160 + 1.17903i
\(25\) 0 0
\(26\) 2.18751 + 3.78887i 0.429005 + 0.743059i
\(27\) 1.12557 + 0.365721i 0.216617 + 0.0703831i
\(28\) 2.16617 + 4.86530i 0.409368 + 0.919455i
\(29\) −0.104314 + 0.0757884i −0.0193706 + 0.0140736i −0.597428 0.801922i \(-0.703811\pi\)
0.578058 + 0.815996i \(0.303811\pi\)
\(30\) 0 0
\(31\) 4.81795 2.79058i 0.865330 0.501203i
\(32\) 5.18091i 0.915865i
\(33\) 1.09651 + 1.50921i 0.190877 + 0.262720i
\(34\) 9.23157 4.11016i 1.58320 0.704887i
\(35\) 0 0
\(36\) −5.76075 9.97791i −0.960125 1.66298i
\(37\) 7.30014 + 4.21474i 1.20014 + 0.692899i 0.960585 0.277985i \(-0.0896666\pi\)
0.239550 + 0.970884i \(0.423000\pi\)
\(38\) 7.95341 7.16128i 1.29021 1.16171i
\(39\) −1.48975 4.58499i −0.238551 0.734186i
\(40\) 0 0
\(41\) −6.73647 2.99927i −1.05206 0.468407i −0.193489 0.981102i \(-0.561980\pi\)
−0.858570 + 0.512696i \(0.828647\pi\)
\(42\) −1.95413 9.19348i −0.301529 1.41858i
\(43\) 0.229229 0.0240929i 0.0349571 0.00367414i −0.0870338 0.996205i \(-0.527739\pi\)
0.121991 + 0.992531i \(0.461072\pi\)
\(44\) 0.254963 2.42581i 0.0384371 0.365705i
\(45\) 0 0
\(46\) 13.2889 + 9.65498i 1.95935 + 1.42355i
\(47\) 4.72375 6.50168i 0.689030 0.948368i −0.310968 0.950420i \(-0.600653\pi\)
0.999998 + 0.00205222i \(0.000653243\pi\)
\(48\) −0.213651 + 1.00515i −0.0308379 + 0.145081i
\(49\) −0.463478 + 4.40970i −0.0662111 + 0.629957i
\(50\) 0 0
\(51\) −10.8919 + 2.31514i −1.52517 + 0.324184i
\(52\) −2.56387 + 5.75854i −0.355545 + 0.798566i
\(53\) 4.26137 + 3.83695i 0.585344 + 0.527046i 0.907726 0.419563i \(-0.137817\pi\)
−0.322382 + 0.946610i \(0.604483\pi\)
\(54\) 0.843912 + 2.59729i 0.114842 + 0.353447i
\(55\) 0 0
\(56\) −2.44826 + 4.24051i −0.327162 + 0.566662i
\(57\) −10.2132 + 5.89661i −1.35278 + 0.781025i
\(58\) −0.282968 0.0919419i −0.0371555 0.0120726i
\(59\) −8.68208 + 3.86551i −1.13031 + 0.503247i −0.884718 0.466127i \(-0.845649\pi\)
−0.245592 + 0.969373i \(0.578982\pi\)
\(60\) 0 0
\(61\) −7.84044 −1.00387 −0.501933 0.864907i \(-0.667377\pi\)
−0.501933 + 0.864907i \(0.667377\pi\)
\(62\) 11.7443 + 5.20934i 1.49152 + 0.661587i
\(63\) 5.55122i 0.699388i
\(64\) −10.3258 + 7.50212i −1.29072 + 0.937765i
\(65\) 0 0
\(66\) −1.33021 + 4.09397i −0.163738 + 0.503933i
\(67\) −4.17994 + 2.41329i −0.510661 + 0.294830i −0.733105 0.680115i \(-0.761930\pi\)
0.222444 + 0.974945i \(0.428596\pi\)
\(68\) 12.6090 + 7.27978i 1.52906 + 0.882804i
\(69\) −12.1115 13.4511i −1.45805 1.61933i
\(70\) 0 0
\(71\) −2.27840 + 2.53042i −0.270396 + 0.300306i −0.863016 0.505177i \(-0.831427\pi\)
0.592619 + 0.805483i \(0.298094\pi\)
\(72\) 4.30854 9.67714i 0.507766 1.14046i
\(73\) −0.559708 2.63322i −0.0655088 0.308195i 0.933179 0.359413i \(-0.117023\pi\)
−0.998687 + 0.0512180i \(0.983690\pi\)
\(74\) 2.03321 + 19.3447i 0.236356 + 2.24877i
\(75\) 0 0
\(76\) 15.0830 + 3.20599i 1.73014 + 0.367752i
\(77\) −0.690782 + 0.950780i −0.0787219 + 0.108351i
\(78\) 6.53879 8.99987i 0.740372 1.01903i
\(79\) 4.42900 + 0.941413i 0.498301 + 0.105917i 0.450204 0.892925i \(-0.351351\pi\)
0.0480968 + 0.998843i \(0.484684\pi\)
\(80\) 0 0
\(81\) 0.772154 + 7.34656i 0.0857949 + 0.816284i
\(82\) −3.53775 16.6438i −0.390680 1.83800i
\(83\) −1.08613 + 2.43949i −0.119218 + 0.267768i −0.963291 0.268461i \(-0.913485\pi\)
0.844072 + 0.536229i \(0.180152\pi\)
\(84\) 9.06128 10.0636i 0.988666 1.09803i
\(85\) 0 0
\(86\) 0.355888 + 0.395253i 0.0383764 + 0.0426213i
\(87\) 0.283932 + 0.163928i 0.0304407 + 0.0175749i
\(88\) 1.94214 1.12130i 0.207033 0.119531i
\(89\) 0.681255 2.09669i 0.0722129 0.222248i −0.908436 0.418025i \(-0.862723\pi\)
0.980649 + 0.195776i \(0.0627226\pi\)
\(90\) 0 0
\(91\) 2.45708 1.78518i 0.257572 0.187137i
\(92\) 23.6666i 2.46741i
\(93\) −11.4650 8.30552i −1.18887 0.861243i
\(94\) 18.5445 1.91272
\(95\) 0 0
\(96\) 12.0347 5.35820i 1.22829 0.546869i
\(97\) −11.6884 3.79778i −1.18677 0.385606i −0.351894 0.936040i \(-0.614462\pi\)
−0.834879 + 0.550434i \(0.814462\pi\)
\(98\) −8.86077 + 5.11577i −0.895073 + 0.516771i
\(99\) 1.27122 2.20182i 0.127763 0.221292i
\(100\) 0 0
\(101\) 2.26952 + 6.98486i 0.225826 + 0.695020i 0.998207 + 0.0598605i \(0.0190656\pi\)
−0.772381 + 0.635159i \(0.780934\pi\)
\(102\) −19.0949 17.1932i −1.89068 1.70238i
\(103\) −2.27315 + 5.10558i −0.223980 + 0.503068i −0.990225 0.139481i \(-0.955456\pi\)
0.766245 + 0.642549i \(0.222123\pi\)
\(104\) −5.66885 + 1.20495i −0.555876 + 0.118155i
\(105\) 0 0
\(106\) −1.38311 + 13.1594i −0.134340 + 1.27816i
\(107\) −0.379264 + 1.78430i −0.0366649 + 0.172495i −0.992670 0.120855i \(-0.961437\pi\)
0.956005 + 0.293349i \(0.0947699\pi\)
\(108\) −2.31279 + 3.18328i −0.222548 + 0.306312i
\(109\) 9.51832 + 6.91546i 0.911689 + 0.662381i 0.941442 0.337176i \(-0.109472\pi\)
−0.0297521 + 0.999557i \(0.509472\pi\)
\(110\) 0 0
\(111\) 2.24045 21.3164i 0.212654 2.02326i
\(112\) −0.643829 + 0.0676692i −0.0608361 + 0.00639414i
\(113\) −2.29837 10.8130i −0.216212 1.01720i −0.943630 0.331003i \(-0.892613\pi\)
0.727417 0.686195i \(-0.240720\pi\)
\(114\) −24.8605 11.0686i −2.32840 1.03667i
\(115\) 0 0
\(116\) −0.132470 0.407700i −0.0122995 0.0378540i
\(117\) −4.88276 + 4.39646i −0.451411 + 0.406452i
\(118\) −18.9920 10.9650i −1.74836 1.00941i
\(119\) −3.50750 6.07518i −0.321532 0.556911i
\(120\) 0 0
\(121\) −9.55728 + 4.25518i −0.868844 + 0.386834i
\(122\) −10.6342 14.6368i −0.962777 1.32515i
\(123\) 18.7500i 1.69063i
\(124\) 3.87381 + 18.1012i 0.347879 + 1.62553i
\(125\) 0 0
\(126\) −10.3632 + 7.52929i −0.923225 + 0.670762i
\(127\) 0.523483 + 1.17576i 0.0464516 + 0.104332i 0.935281 0.353907i \(-0.115147\pi\)
−0.888829 + 0.458239i \(0.848480\pi\)
\(128\) −18.1557 5.89913i −1.60475 0.521414i
\(129\) −0.293038 0.507557i −0.0258006 0.0446879i
\(130\) 0 0
\(131\) −5.36666 5.96028i −0.468888 0.520752i 0.461594 0.887091i \(-0.347278\pi\)
−0.930481 + 0.366339i \(0.880611\pi\)
\(132\) −5.89859 + 1.91657i −0.513406 + 0.166816i
\(133\) −5.52123 4.97134i −0.478752 0.431070i
\(134\) −10.1746 4.53001i −0.878949 0.391334i
\(135\) 0 0
\(136\) 1.39924 + 13.3128i 0.119983 + 1.14157i
\(137\) −16.3865 1.72229i −1.39999 0.147145i −0.625745 0.780028i \(-0.715205\pi\)
−0.774248 + 0.632883i \(0.781872\pi\)
\(138\) 8.68382 40.8542i 0.739216 3.47774i
\(139\) 5.93804 + 4.31424i 0.503658 + 0.365929i 0.810412 0.585860i \(-0.199243\pi\)
−0.306755 + 0.951789i \(0.599243\pi\)
\(140\) 0 0
\(141\) −19.9881 4.24861i −1.68330 0.357797i
\(142\) −7.81413 0.821298i −0.655747 0.0689218i
\(143\) −1.38338 + 0.145399i −0.115684 + 0.0121588i
\(144\) 1.36990 0.291182i 0.114159 0.0242652i
\(145\) 0 0
\(146\) 4.15662 4.61639i 0.344004 0.382055i
\(147\) 10.7226 3.48398i 0.884385 0.287354i
\(148\) −20.8269 + 18.7526i −1.71196 + 1.54145i
\(149\) −3.18096 + 5.50959i −0.260595 + 0.451363i −0.966400 0.257043i \(-0.917252\pi\)
0.705805 + 0.708406i \(0.250585\pi\)
\(150\) 0 0
\(151\) −1.70724 + 5.25433i −0.138933 + 0.427592i −0.996181 0.0873120i \(-0.972172\pi\)
0.857248 + 0.514904i \(0.172172\pi\)
\(152\) 5.76639 + 12.9515i 0.467716 + 1.05051i
\(153\) 8.92024 + 12.2777i 0.721159 + 0.992590i
\(154\) −2.71187 −0.218529
\(155\) 0 0
\(156\) 16.0281 1.28327
\(157\) 4.69903 + 6.46767i 0.375024 + 0.516176i 0.954258 0.298985i \(-0.0966482\pi\)
−0.579234 + 0.815161i \(0.696648\pi\)
\(158\) 4.24973 + 9.54505i 0.338090 + 0.759363i
\(159\) 4.50565 13.8670i 0.357321 1.09972i
\(160\) 0 0
\(161\) 5.70146 9.87521i 0.449338 0.778276i
\(162\) −12.6675 + 11.4058i −0.995250 + 0.896127i
\(163\) 16.2302 5.27350i 1.27124 0.413052i 0.405756 0.913981i \(-0.367008\pi\)
0.865488 + 0.500929i \(0.167008\pi\)
\(164\) 16.4045 18.2190i 1.28098 1.42267i
\(165\) 0 0
\(166\) −6.02725 + 1.28113i −0.467805 + 0.0994351i
\(167\) 24.2387 2.54759i 1.87565 0.197138i 0.903034 0.429570i \(-0.141335\pi\)
0.972613 + 0.232431i \(0.0746680\pi\)
\(168\) 12.3823 + 1.30143i 0.955314 + 0.100408i
\(169\) −9.19975 1.95547i −0.707673 0.150421i
\(170\) 0 0
\(171\) 13.0032 + 9.44737i 0.994379 + 0.722458i
\(172\) −0.159325 + 0.749565i −0.0121484 + 0.0571538i
\(173\) −8.92444 0.937997i −0.678513 0.0713146i −0.240998 0.970526i \(-0.577475\pi\)
−0.437515 + 0.899211i \(0.644141\pi\)
\(174\) 0.0790797 + 0.752393i 0.00599501 + 0.0570387i
\(175\) 0 0
\(176\) 0.270863 + 0.120596i 0.0204171 + 0.00909027i
\(177\) 17.9583 + 16.1698i 1.34983 + 1.21539i
\(178\) 4.83816 1.57201i 0.362635 0.117827i
\(179\) 7.55483 + 8.39049i 0.564675 + 0.627135i 0.956088 0.293080i \(-0.0946803\pi\)
−0.391413 + 0.920215i \(0.628014\pi\)
\(180\) 0 0
\(181\) 7.47052 + 12.9393i 0.555279 + 0.961772i 0.997882 + 0.0650542i \(0.0207220\pi\)
−0.442602 + 0.896718i \(0.645945\pi\)
\(182\) 6.66523 + 2.16567i 0.494060 + 0.160530i
\(183\) 8.10873 + 18.2125i 0.599415 + 1.34631i
\(184\) −17.6036 + 12.7898i −1.29775 + 0.942874i
\(185\) 0 0
\(186\) −0.0453903 32.6683i −0.00332818 2.39536i
\(187\) 3.21286i 0.234947i
\(188\) 15.7050 + 21.6160i 1.14540 + 1.57651i
\(189\) 1.73192 0.771100i 0.125979 0.0560893i
\(190\) 0 0
\(191\) −1.13046 1.95802i −0.0817975 0.141677i 0.822225 0.569163i \(-0.192733\pi\)
−0.904022 + 0.427486i \(0.859399\pi\)
\(192\) 28.1057 + 16.2269i 2.02836 + 1.17107i
\(193\) −19.0723 + 17.1727i −1.37285 + 1.23612i −0.430033 + 0.902813i \(0.641498\pi\)
−0.942818 + 0.333307i \(0.891835\pi\)
\(194\) −8.76347 26.9712i −0.629181 1.93642i
\(195\) 0 0
\(196\) −13.4671 5.99594i −0.961936 0.428282i
\(197\) −1.28816 6.06032i −0.0917776 0.431780i −0.999914 0.0131056i \(-0.995828\pi\)
0.908136 0.418674i \(-0.137505\pi\)
\(198\) 5.83463 0.613244i 0.414649 0.0435813i
\(199\) −0.477625 + 4.54430i −0.0338579 + 0.322137i 0.964463 + 0.264217i \(0.0851135\pi\)
−0.998321 + 0.0579199i \(0.981553\pi\)
\(200\) 0 0
\(201\) 9.92879 + 7.21369i 0.700323 + 0.508814i
\(202\) −9.96132 + 13.7106i −0.700876 + 0.964673i
\(203\) −0.0429430 + 0.202031i −0.00301401 + 0.0141798i
\(204\) 3.86974 36.8182i 0.270936 2.57779i
\(205\) 0 0
\(206\) −12.6144 + 2.68127i −0.878886 + 0.186813i
\(207\) −10.0336 + 22.5359i −0.697386 + 1.56636i
\(208\) −0.569420 0.512708i −0.0394822 0.0355499i
\(209\) 1.05150 + 3.23618i 0.0727336 + 0.223851i
\(210\) 0 0
\(211\) 9.30839 16.1226i 0.640816 1.10993i −0.344435 0.938810i \(-0.611930\pi\)
0.985251 0.171115i \(-0.0547371\pi\)
\(212\) −16.5103 + 9.53225i −1.13394 + 0.654678i
\(213\) 8.23426 + 2.67547i 0.564203 + 0.183321i
\(214\) −3.84539 + 1.71208i −0.262865 + 0.117035i
\(215\) 0 0
\(216\) −3.61764 −0.246149
\(217\) 2.74430 8.48618i 0.186295 0.576080i
\(218\) 27.1487i 1.83874i
\(219\) −5.53783 + 4.02347i −0.374212 + 0.271881i
\(220\) 0 0
\(221\) 2.56575 7.89656i 0.172591 0.531180i
\(222\) 42.8329 24.7296i 2.87475 1.65974i
\(223\) −5.38231 3.10748i −0.360426 0.208092i 0.308842 0.951113i \(-0.400059\pi\)
−0.669268 + 0.743021i \(0.733392\pi\)
\(224\) 5.55324 + 6.16750i 0.371042 + 0.412084i
\(225\) 0 0
\(226\) 17.0686 18.9566i 1.13539 1.26097i
\(227\) −5.30702 + 11.9198i −0.352239 + 0.791142i 0.647342 + 0.762200i \(0.275881\pi\)
−0.999581 + 0.0289423i \(0.990786\pi\)
\(228\) −8.15194 38.3519i −0.539876 2.53992i
\(229\) 1.59698 + 15.1942i 0.105531 + 1.00406i 0.911275 + 0.411799i \(0.135099\pi\)
−0.805743 + 0.592265i \(0.798234\pi\)
\(230\) 0 0
\(231\) 2.92298 + 0.621299i 0.192318 + 0.0408785i
\(232\) 0.231665 0.318860i 0.0152096 0.0209342i
\(233\) 7.67721 10.5668i 0.502951 0.692253i −0.479760 0.877400i \(-0.659276\pi\)
0.982711 + 0.185147i \(0.0592762\pi\)
\(234\) −14.8301 3.15223i −0.969471 0.206068i
\(235\) 0 0
\(236\) −3.30277 31.4237i −0.214992 2.04551i
\(237\) −2.39375 11.2617i −0.155491 0.731527i
\(238\) 6.58398 14.7879i 0.426776 0.958554i
\(239\) 15.6859 17.4210i 1.01464 1.12687i 0.0227507 0.999741i \(-0.492758\pi\)
0.991886 0.127128i \(-0.0405757\pi\)
\(240\) 0 0
\(241\) 16.5356 + 18.3647i 1.06515 + 1.18297i 0.982475 + 0.186395i \(0.0596805\pi\)
0.0826776 + 0.996576i \(0.473653\pi\)
\(242\) −20.9065 12.0704i −1.34392 0.775914i
\(243\) 19.3415 11.1668i 1.24076 0.716353i
\(244\) 8.05513 24.7911i 0.515677 1.58709i
\(245\) 0 0
\(246\) −35.0030 + 25.4312i −2.23171 + 1.62143i
\(247\) 8.79358i 0.559522i
\(248\) −11.3705 + 12.6635i −0.722025 + 0.804134i
\(249\) 6.78996 0.430296
\(250\) 0 0
\(251\) −21.1889 + 9.43391i −1.33743 + 0.595463i −0.945827 0.324671i \(-0.894747\pi\)
−0.391605 + 0.920134i \(0.628080\pi\)
\(252\) −17.5527 5.70323i −1.10572 0.359270i
\(253\) −4.52282 + 2.61125i −0.284348 + 0.164168i
\(254\) −1.48493 + 2.57198i −0.0931729 + 0.161380i
\(255\) 0 0
\(256\) −5.72420 17.6173i −0.357763 1.10108i
\(257\) −11.4044 10.2686i −0.711386 0.640535i 0.231814 0.972760i \(-0.425534\pi\)
−0.943200 + 0.332225i \(0.892201\pi\)
\(258\) 0.550066 1.23547i 0.0342456 0.0769169i
\(259\) 13.2079 2.80743i 0.820700 0.174445i
\(260\) 0 0
\(261\) 0.0467066 0.444383i 0.00289106 0.0275066i
\(262\) 3.84786 18.1028i 0.237722 1.11839i
\(263\) −4.00039 + 5.50607i −0.246675 + 0.339519i −0.914343 0.404940i \(-0.867292\pi\)
0.667668 + 0.744459i \(0.267292\pi\)
\(264\) −4.61325 3.35173i −0.283926 0.206284i
\(265\) 0 0
\(266\) 1.79202 17.0500i 0.109876 1.04540i
\(267\) −5.57495 + 0.585951i −0.341181 + 0.0358596i
\(268\) −3.33632 15.6962i −0.203798 0.958796i
\(269\) −9.61017 4.27873i −0.585943 0.260878i 0.0922822 0.995733i \(-0.470584\pi\)
−0.678225 + 0.734854i \(0.737250\pi\)
\(270\) 0 0
\(271\) −0.487363 1.49995i −0.0296052 0.0911154i 0.935162 0.354220i \(-0.115254\pi\)
−0.964767 + 0.263105i \(0.915254\pi\)
\(272\) −1.31522 + 1.18423i −0.0797470 + 0.0718046i
\(273\) −6.68794 3.86128i −0.404772 0.233695i
\(274\) −19.0103 32.9268i −1.14845 1.98918i
\(275\) 0 0
\(276\) 54.9750 24.4765i 3.30911 1.47331i
\(277\) 7.11300 + 9.79020i 0.427379 + 0.588236i 0.967349 0.253448i \(-0.0815646\pi\)
−0.539970 + 0.841684i \(0.681565\pi\)
\(278\) 16.9368i 1.01580i
\(279\) −3.98538 + 18.8787i −0.238599 + 1.13024i
\(280\) 0 0
\(281\) 17.3718 12.6214i 1.03632 0.752927i 0.0667525 0.997770i \(-0.478736\pi\)
0.969563 + 0.244842i \(0.0787362\pi\)
\(282\) −19.1791 43.0769i −1.14210 2.56519i
\(283\) −0.655094 0.212853i −0.0389413 0.0126528i 0.289482 0.957184i \(-0.406517\pi\)
−0.328423 + 0.944531i \(0.606517\pi\)
\(284\) −5.66030 9.80392i −0.335877 0.581756i
\(285\) 0 0
\(286\) −2.14775 2.38532i −0.126999 0.141047i
\(287\) −11.2341 + 3.65018i −0.663127 + 0.215463i
\(288\) −13.3426 12.0137i −0.786217 0.707913i
\(289\) −1.98947 0.885767i −0.117027 0.0521040i
\(290\) 0 0
\(291\) 3.26649 + 31.0785i 0.191485 + 1.82186i
\(292\) 8.90116 + 0.935550i 0.520901 + 0.0547489i
\(293\) 1.87368 8.81495i 0.109461 0.514975i −0.888918 0.458066i \(-0.848542\pi\)
0.998379 0.0569086i \(-0.0181244\pi\)
\(294\) 21.0474 + 15.2918i 1.22751 + 0.891837i
\(295\) 0 0
\(296\) −25.2036 5.35719i −1.46493 0.311380i
\(297\) −0.863526 0.0907602i −0.0501068 0.00526644i
\(298\) −14.5999 + 1.53451i −0.845749 + 0.0888918i
\(299\) 13.2015 2.80607i 0.763463 0.162279i
\(300\) 0 0
\(301\) 0.247056 0.274384i 0.0142401 0.0158152i
\(302\) −12.1245 + 3.93949i −0.697688 + 0.226692i
\(303\) 13.8779 12.4957i 0.797265 0.717861i
\(304\) −0.937195 + 1.62327i −0.0537518 + 0.0931009i
\(305\) 0 0
\(306\) −10.8215 + 33.3051i −0.618623 + 1.90393i
\(307\) 12.7441 + 28.6238i 0.727346 + 1.63365i 0.772776 + 0.634679i \(0.218868\pi\)
−0.0454296 + 0.998968i \(0.514466\pi\)
\(308\) −2.29663 3.16104i −0.130863 0.180117i
\(309\) 14.2107 0.808416
\(310\) 0 0
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) 8.66180 + 11.9219i 0.490378 + 0.674947i
\(313\) −8.81346 19.7953i −0.498166 1.11890i −0.971289 0.237903i \(-0.923540\pi\)
0.473123 0.880996i \(-0.343127\pi\)
\(314\) −5.70058 + 17.5446i −0.321702 + 0.990098i
\(315\) 0 0
\(316\) −7.52698 + 13.0371i −0.423426 + 0.733395i
\(317\) 0.755070 0.679868i 0.0424089 0.0381852i −0.647654 0.761935i \(-0.724250\pi\)
0.690063 + 0.723750i \(0.257583\pi\)
\(318\) 31.9984 10.3969i 1.79438 0.583030i
\(319\) 0.0632977 0.0702992i 0.00354399 0.00393600i
\(320\) 0 0
\(321\) 4.53698 0.964364i 0.253229 0.0538256i
\(322\) 26.1684 2.75041i 1.45831 0.153274i
\(323\) −20.1998 2.12308i −1.12394 0.118131i
\(324\) −24.0228 5.10620i −1.33460 0.283678i
\(325\) 0 0
\(326\) 31.8582 + 23.1463i 1.76446 + 1.28196i
\(327\) 6.21986 29.2621i 0.343959 1.61820i
\(328\) 22.4168 + 2.35610i 1.23776 + 0.130094i
\(329\) −1.34565 12.8030i −0.0741881 0.705853i
\(330\) 0 0
\(331\) 24.3820 + 10.8556i 1.34016 + 0.596676i 0.946537 0.322597i \(-0.104556\pi\)
0.393621 + 0.919273i \(0.371222\pi\)
\(332\) −6.59768 5.94058i −0.362095 0.326032i
\(333\) −27.7822 + 9.02697i −1.52245 + 0.494675i
\(334\) 37.6316 + 41.7941i 2.05911 + 2.28687i
\(335\) 0 0
\(336\) 0.823049 + 1.42556i 0.0449010 + 0.0777708i
\(337\) −30.3782 9.87048i −1.65481 0.537679i −0.675033 0.737788i \(-0.735871\pi\)
−0.979774 + 0.200108i \(0.935871\pi\)
\(338\) −8.82738 19.8266i −0.480146 1.07843i
\(339\) −22.7404 + 16.5218i −1.23509 + 0.897343i
\(340\) 0 0
\(341\) −3.03182 + 2.73750i −0.164182 + 0.148244i
\(342\) 37.0885i 2.00552i
\(343\) 10.7658 + 14.8178i 0.581298 + 0.800088i
\(344\) −0.643640 + 0.286567i −0.0347027 + 0.0154507i
\(345\) 0 0
\(346\) −10.3534 17.9326i −0.556603 0.964065i
\(347\) 2.70314 + 1.56066i 0.145112 + 0.0837804i 0.570798 0.821090i \(-0.306634\pi\)
−0.425686 + 0.904871i \(0.639967\pi\)
\(348\) −0.810041 + 0.729364i −0.0434227 + 0.0390980i
\(349\) 6.80655 + 20.9484i 0.364346 + 1.12134i 0.950389 + 0.311063i \(0.100685\pi\)
−0.586043 + 0.810280i \(0.699315\pi\)
\(350\) 0 0
\(351\) 2.04989 + 0.912671i 0.109415 + 0.0487147i
\(352\) −0.790275 3.71795i −0.0421218 0.198167i
\(353\) 4.90537 0.515575i 0.261087 0.0274413i 0.0269192 0.999638i \(-0.491430\pi\)
0.234167 + 0.972196i \(0.424764\pi\)
\(354\) −5.82873 + 55.4567i −0.309794 + 2.94749i
\(355\) 0 0
\(356\) 5.92973 + 4.30820i 0.314275 + 0.228334i
\(357\) −10.4845 + 14.4306i −0.554897 + 0.763750i
\(358\) −5.41676 + 25.4838i −0.286285 + 1.34686i
\(359\) −0.0377201 + 0.358883i −0.00199079 + 0.0189411i −0.995472 0.0950532i \(-0.969698\pi\)
0.993481 + 0.113994i \(0.0363646\pi\)
\(360\) 0 0
\(361\) −2.45641 + 0.522126i −0.129285 + 0.0274803i
\(362\) −14.0230 + 31.4962i −0.737033 + 1.65540i
\(363\) 19.7686 + 17.7998i 1.03758 + 0.934246i
\(364\) 3.12029 + 9.60325i 0.163547 + 0.503347i
\(365\) 0 0
\(366\) −23.0015 + 39.8398i −1.20231 + 2.08246i
\(367\) 25.4498 14.6935i 1.32847 0.766992i 0.343406 0.939187i \(-0.388419\pi\)
0.985063 + 0.172195i \(0.0550859\pi\)
\(368\) −2.73602 0.888987i −0.142625 0.0463416i
\(369\) 23.3449 10.3938i 1.21528 0.541080i
\(370\) 0 0
\(371\) 9.18555 0.476890
\(372\) 38.0407 27.7190i 1.97232 1.43716i
\(373\) 17.7284i 0.917941i 0.888451 + 0.458971i \(0.151782\pi\)
−0.888451 + 0.458971i \(0.848218\pi\)
\(374\) −5.99786 + 4.35770i −0.310142 + 0.225331i
\(375\) 0 0
\(376\) −7.59116 + 23.3632i −0.391484 + 1.20486i
\(377\) −0.211713 + 0.122233i −0.0109038 + 0.00629530i
\(378\) 3.78857 + 2.18733i 0.194863 + 0.112504i
\(379\) 1.64634 + 1.82845i 0.0845669 + 0.0939211i 0.783943 0.620833i \(-0.213205\pi\)
−0.699376 + 0.714754i \(0.746539\pi\)
\(380\) 0 0
\(381\) 2.18978 2.43199i 0.112186 0.124595i
\(382\) 2.12201 4.76611i 0.108571 0.243855i
\(383\) 3.97484 + 18.7001i 0.203105 + 0.955533i 0.955082 + 0.296343i \(0.0957672\pi\)
−0.751977 + 0.659190i \(0.770899\pi\)
\(384\) 5.07387 + 48.2747i 0.258925 + 2.46351i
\(385\) 0 0
\(386\) −57.9268 12.3127i −2.94840 0.626701i
\(387\) −0.469497 + 0.646208i −0.0238659 + 0.0328486i
\(388\) 24.0168 33.0563i 1.21927 1.67818i
\(389\) 5.15587 + 1.09591i 0.261413 + 0.0555651i 0.336754 0.941593i \(-0.390671\pi\)
−0.0753405 + 0.997158i \(0.524004\pi\)
\(390\) 0 0
\(391\) −3.25851 31.0027i −0.164790 1.56787i
\(392\) −2.81793 13.2573i −0.142327 0.669597i
\(393\) −8.29480 + 18.6304i −0.418417 + 0.939781i
\(394\) 9.56640 10.6246i 0.481949 0.535258i
\(395\) 0 0
\(396\) 5.65604 + 6.28167i 0.284227 + 0.315666i
\(397\) 14.6579 + 8.46275i 0.735660 + 0.424733i 0.820489 0.571662i \(-0.193701\pi\)
−0.0848295 + 0.996395i \(0.527035\pi\)
\(398\) −9.13124 + 5.27193i −0.457708 + 0.264258i
\(399\) −5.83773 + 17.9667i −0.292252 + 0.899460i
\(400\) 0 0
\(401\) −30.7747 + 22.3591i −1.53682 + 1.11656i −0.584524 + 0.811377i \(0.698719\pi\)
−0.952293 + 0.305186i \(0.901281\pi\)
\(402\) 28.3195i 1.41245i
\(403\) 9.63773 4.30705i 0.480089 0.214549i
\(404\) −24.4175 −1.21482
\(405\) 0 0
\(406\) −0.435402 + 0.193854i −0.0216087 + 0.00962079i
\(407\) −5.88166 1.91107i −0.291543 0.0947281i
\(408\) 29.4772 17.0187i 1.45934 0.842550i
\(409\) 0.249342 0.431873i 0.0123292 0.0213547i −0.859795 0.510639i \(-0.829409\pi\)
0.872124 + 0.489285i \(0.162742\pi\)
\(410\) 0 0
\(411\) 12.9465 + 39.8453i 0.638605 + 1.96542i
\(412\) −13.8082 12.4330i −0.680283 0.612529i
\(413\) −6.19208 + 13.9076i −0.304692 + 0.684350i
\(414\) −55.6796 + 11.8351i −2.73650 + 0.581662i
\(415\) 0 0
\(416\) −1.02677 + 9.76908i −0.0503416 + 0.478968i
\(417\) 3.88028 18.2553i 0.190018 0.893966i
\(418\) −4.61521 + 6.35229i −0.225737 + 0.310701i
\(419\) 10.9298 + 7.94098i 0.533957 + 0.387942i 0.821836 0.569725i \(-0.192950\pi\)
−0.287879 + 0.957667i \(0.592950\pi\)
\(420\) 0 0
\(421\) 3.23151 30.7458i 0.157494 1.49846i −0.575264 0.817968i \(-0.695101\pi\)
0.732758 0.680489i \(-0.238233\pi\)
\(422\) 42.7234 4.49041i 2.07974 0.218590i
\(423\) 5.79037 + 27.2415i 0.281537 + 1.32453i
\(424\) −16.0127 7.12930i −0.777644 0.346229i
\(425\) 0 0
\(426\) 6.17373 + 19.0008i 0.299118 + 0.920591i
\(427\) −9.33347 + 8.40390i −0.451678 + 0.406693i
\(428\) −5.25223 3.03237i −0.253876 0.146575i
\(429\) 1.76846 + 3.06306i 0.0853820 + 0.147886i
\(430\) 0 0
\(431\) −11.0126 + 4.90313i −0.530458 + 0.236175i −0.654446 0.756108i \(-0.727098\pi\)
0.123988 + 0.992284i \(0.460432\pi\)
\(432\) −0.281134 0.386948i −0.0135261 0.0186170i
\(433\) 32.3919i 1.55665i −0.627860 0.778327i \(-0.716069\pi\)
0.627860 0.778327i \(-0.283931\pi\)
\(434\) 19.5644 6.38693i 0.939122 0.306583i
\(435\) 0 0
\(436\) −31.6454 + 22.9917i −1.51554 + 1.10110i
\(437\) −13.4287 30.1613i −0.642380 1.44281i
\(438\) −15.0222 4.88102i −0.717790 0.233224i
\(439\) 6.18408 + 10.7111i 0.295150 + 0.511215i 0.975020 0.222118i \(-0.0712971\pi\)
−0.679870 + 0.733333i \(0.737964\pi\)
\(440\) 0 0
\(441\) −10.2817 11.4190i −0.489604 0.543760i
\(442\) 18.2215 5.92053i 0.866709 0.281611i
\(443\) −3.51017 3.16058i −0.166773 0.150163i 0.581518 0.813533i \(-0.302459\pi\)
−0.748292 + 0.663370i \(0.769126\pi\)
\(444\) 65.0998 + 28.9843i 3.08950 + 1.37553i
\(445\) 0 0
\(446\) −1.49906 14.2626i −0.0709826 0.675354i
\(447\) 16.0880 + 1.69092i 0.760937 + 0.0799777i
\(448\) −4.25083 + 19.9986i −0.200833 + 0.944844i
\(449\) −12.9315 9.39528i −0.610275 0.443390i 0.239236 0.970961i \(-0.423103\pi\)
−0.849511 + 0.527571i \(0.823103\pi\)
\(450\) 0 0
\(451\) 5.29175 + 1.12480i 0.249179 + 0.0529646i
\(452\) 36.5515 + 3.84171i 1.71924 + 0.180699i
\(453\) 13.9709 1.46840i 0.656411 0.0689916i
\(454\) −29.4502 + 6.25984i −1.38217 + 0.293789i
\(455\) 0 0
\(456\) 24.1213 26.7894i 1.12958 1.25453i
\(457\) 4.33468 1.40842i 0.202768 0.0658832i −0.205872 0.978579i \(-0.566003\pi\)
0.408640 + 0.912696i \(0.366003\pi\)
\(458\) −26.1990 + 23.5897i −1.22420 + 1.10227i
\(459\) 2.59141 4.48846i 0.120957 0.209503i
\(460\) 0 0
\(461\) −5.25050 + 16.1594i −0.244540 + 0.752618i 0.751171 + 0.660107i \(0.229489\pi\)
−0.995712 + 0.0925105i \(0.970511\pi\)
\(462\) 2.80467 + 6.29939i 0.130485 + 0.293074i
\(463\) −16.1217 22.1896i −0.749239 1.03124i −0.998034 0.0626822i \(-0.980035\pi\)
0.248795 0.968556i \(-0.419965\pi\)
\(464\) 0.0521088 0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) −13.4665 18.5350i −0.623153 0.857697i 0.374425 0.927257i \(-0.377840\pi\)
−0.997578 + 0.0695608i \(0.977840\pi\)
\(468\) −8.88495 19.9559i −0.410707 0.922463i
\(469\) −2.38919 + 7.35318i −0.110323 + 0.339538i
\(470\) 0 0
\(471\) 10.1639 17.6043i 0.468327 0.811165i
\(472\) 21.5886 19.4385i 0.993696 0.894728i
\(473\) −0.160825 + 0.0522553i −0.00739476 + 0.00240270i
\(474\) 17.7770 19.7433i 0.816524 0.906841i
\(475\) 0 0
\(476\) 22.8130 4.84905i 1.04563 0.222256i
\(477\) −19.7628 + 2.07716i −0.904878 + 0.0951065i
\(478\) 53.7972 + 5.65432i 2.46063 + 0.258622i
\(479\) 8.84935 + 1.88099i 0.404337 + 0.0859445i 0.405591 0.914055i \(-0.367066\pi\)
−0.00125373 + 0.999999i \(0.500399\pi\)
\(480\) 0 0
\(481\) 12.9298 + 9.39403i 0.589547 + 0.428331i
\(482\) −11.8559 + 55.7777i −0.540022 + 2.54060i
\(483\) −28.8356 3.03075i −1.31207 0.137904i
\(484\) −3.63570 34.5914i −0.165259 1.57234i
\(485\) 0 0
\(486\) 47.0800 + 20.9614i 2.13559 + 0.950828i
\(487\) 17.5551 + 15.8066i 0.795496 + 0.716268i 0.962970 0.269609i \(-0.0868944\pi\)
−0.167474 + 0.985876i \(0.553561\pi\)
\(488\) 22.7931 7.40594i 1.03180 0.335251i
\(489\) −29.0353 32.2470i −1.31302 1.45826i
\(490\) 0 0
\(491\) −4.61346 7.99074i −0.208202 0.360617i 0.742946 0.669351i \(-0.233428\pi\)
−0.951148 + 0.308734i \(0.900095\pi\)
\(492\) −59.2867 19.2634i −2.67285 0.868462i
\(493\) 0.229666 + 0.515838i 0.0103436 + 0.0232322i
\(494\) 16.4161 11.9270i 0.738596 0.536621i
\(495\) 0 0
\(496\) −2.23813 0.232093i −0.100495 0.0104213i
\(497\) 5.45442i 0.244664i
\(498\) 9.20943 + 12.6757i 0.412684 + 0.568011i
\(499\) −25.9574 + 11.5570i −1.16201 + 0.517362i −0.894884 0.446298i \(-0.852742\pi\)
−0.267130 + 0.963660i \(0.586075\pi\)
\(500\) 0 0
\(501\) −30.9859 53.6692i −1.38435 2.39776i
\(502\) −46.3506 26.7606i −2.06873 1.19438i
\(503\) −13.5833 + 12.2304i −0.605647 + 0.545327i −0.913880 0.405984i \(-0.866929\pi\)
0.308233 + 0.951311i \(0.400262\pi\)
\(504\) −5.24359 16.1381i −0.233568 0.718848i
\(505\) 0 0
\(506\) −11.0092 4.90161i −0.489419 0.217903i
\(507\) 4.97221 + 23.3924i 0.220824 + 1.03889i
\(508\) −4.25553 + 0.447274i −0.188809 + 0.0198446i
\(509\) 1.08567 10.3295i 0.0481215 0.457845i −0.943756 0.330644i \(-0.892734\pi\)
0.991877 0.127201i \(-0.0405993\pi\)
\(510\) 0 0
\(511\) −3.48875 2.53472i −0.154333 0.112130i
\(512\) 2.68292 3.69272i 0.118569 0.163197i
\(513\) 1.14125 5.36915i 0.0503873 0.237054i
\(514\) 3.70152 35.2176i 0.163267 1.55338i
\(515\) 0 0
\(516\) 1.90594 0.405120i 0.0839042 0.0178344i
\(517\) −2.39814 + 5.38631i −0.105470 + 0.236890i
\(518\) 23.1553 + 20.8491i 1.01739 + 0.916058i
\(519\) 7.05096 + 21.7006i 0.309503 + 0.952552i
\(520\) 0 0
\(521\) −4.62522 + 8.01111i −0.202635 + 0.350973i −0.949376 0.314141i \(-0.898284\pi\)
0.746742 + 0.665114i \(0.231617\pi\)
\(522\) 0.892937 0.515537i 0.0390828 0.0225645i
\(523\) −6.25335 2.03184i −0.273440 0.0888461i 0.169087 0.985601i \(-0.445918\pi\)
−0.442527 + 0.896755i \(0.645918\pi\)
\(524\) 24.3598 10.8457i 1.06416 0.473796i
\(525\) 0 0
\(526\) −15.7047 −0.684759
\(527\) −7.56684 23.1787i −0.329617 1.00968i
\(528\) 0.753909i 0.0328097i
\(529\) 22.3875 16.2655i 0.973371 0.707195i
\(530\) 0 0
\(531\) 10.1774 31.3227i 0.441660 1.35929i
\(532\) 21.3916 12.3504i 0.927443 0.535460i
\(533\) −12.1078 6.99044i −0.524447 0.302790i
\(534\) −8.65534 9.61273i −0.374553 0.415983i
\(535\) 0 0
\(536\) 9.87206 10.9640i 0.426408 0.473574i
\(537\) 11.6769 26.2267i 0.503894 1.13176i
\(538\) −5.04692 23.7439i −0.217588 1.02367i
\(539\) −0.340034 3.23520i −0.0146463 0.139350i
\(540\) 0 0
\(541\) 2.15513 + 0.458087i 0.0926562 + 0.0196947i 0.254006 0.967203i \(-0.418252\pi\)
−0.161350 + 0.986897i \(0.551585\pi\)
\(542\) 2.13912 2.94425i 0.0918831 0.126466i
\(543\) 22.3305 30.7353i 0.958294 1.31898i
\(544\) 22.1927 + 4.71720i 0.951503 + 0.202248i
\(545\) 0 0
\(546\) −1.86270 17.7224i −0.0797162 0.758449i
\(547\) −1.01117 4.75717i −0.0432344 0.203402i 0.951229 0.308486i \(-0.0998222\pi\)
−0.994463 + 0.105084i \(0.966489\pi\)
\(548\) 22.2810 50.0440i 0.951797 2.13777i
\(549\) 18.1807 20.1917i 0.775933 0.861761i
\(550\) 0 0
\(551\) 0.400155 + 0.444417i 0.0170472 + 0.0189328i
\(552\) 47.9152 + 27.6639i 2.03941 + 1.17745i
\(553\) 6.28147 3.62661i 0.267115 0.154219i
\(554\) −8.62905 + 26.5575i −0.366613 + 1.12832i
\(555\) 0 0
\(556\) −19.7421 + 14.3435i −0.837251 + 0.608298i
\(557\) 11.0363i 0.467623i −0.972282 0.233811i \(-0.924880\pi\)
0.972282 0.233811i \(-0.0751198\pi\)
\(558\) −40.6488 + 18.1657i −1.72080 + 0.769016i
\(559\) 0.437007 0.0184834
\(560\) 0 0
\(561\) 7.46313 3.32280i 0.315094 0.140289i
\(562\) 47.1238 + 15.3115i 1.98780 + 0.645875i
\(563\) −9.69292 + 5.59621i −0.408508 + 0.235852i −0.690148 0.723668i \(-0.742455\pi\)
0.281641 + 0.959520i \(0.409121\pi\)
\(564\) 33.9694 58.8366i 1.43037 2.47747i
\(565\) 0 0
\(566\) −0.491164 1.51165i −0.0206452 0.0635393i
\(567\) 8.79372 + 7.91790i 0.369301 + 0.332521i
\(568\) 4.23341 9.50839i 0.177630 0.398963i
\(569\) −45.8966 + 9.75563i −1.92409 + 0.408977i −0.924471 + 0.381252i \(0.875493\pi\)
−0.999616 + 0.0277250i \(0.991174\pi\)
\(570\) 0 0
\(571\) 2.13862 20.3476i 0.0894983 0.851520i −0.854029 0.520225i \(-0.825848\pi\)
0.943527 0.331295i \(-0.107485\pi\)
\(572\) 0.961511 4.52355i 0.0402028 0.189139i
\(573\) −3.37913 + 4.65097i −0.141165 + 0.194297i
\(574\) −22.0514 16.0213i −0.920407 0.668715i
\(575\) 0 0
\(576\) 4.62337 43.9885i 0.192641 1.83285i
\(577\) −3.62836 + 0.381356i −0.151051 + 0.0158761i −0.179752 0.983712i \(-0.557530\pi\)
0.0287013 + 0.999588i \(0.490863\pi\)
\(578\) −1.04480 4.91538i −0.0434578 0.204453i
\(579\) 59.6153 + 26.5425i 2.47753 + 1.10307i
\(580\) 0 0
\(581\) 1.32184 + 4.06822i 0.0548393 + 0.168778i
\(582\) −53.5879 + 48.2507i −2.22129 + 2.00006i
\(583\) −3.64334 2.10348i −0.150892 0.0871173i
\(584\) 4.11443 + 7.12641i 0.170256 + 0.294893i
\(585\) 0 0
\(586\) 18.9973 8.45815i 0.784772 0.349403i
\(587\) −13.4442 18.5043i −0.554901 0.763755i 0.435766 0.900060i \(-0.356477\pi\)
−0.990667 + 0.136305i \(0.956477\pi\)
\(588\) 37.4838i 1.54580i
\(589\) −15.2076 20.8705i −0.626620 0.859954i
\(590\) 0 0
\(591\) −12.7452 + 9.25996i −0.524269 + 0.380904i
\(592\) −1.38561 3.11213i −0.0569482 0.127908i
\(593\) −18.5073 6.01340i −0.760005 0.246941i −0.0967243 0.995311i \(-0.530837\pi\)
−0.663281 + 0.748371i \(0.730837\pi\)
\(594\) −1.00179 1.73515i −0.0411040 0.0711943i
\(595\) 0 0
\(596\) −14.1530 15.7185i −0.579731 0.643856i
\(597\) 11.0499 3.59033i 0.452242 0.146942i
\(598\) 23.1440 + 20.8390i 0.946430 + 0.852169i
\(599\) −32.1311 14.3057i −1.31284 0.584514i −0.373541 0.927614i \(-0.621857\pi\)
−0.939299 + 0.343099i \(0.888523\pi\)
\(600\) 0 0
\(601\) −0.615470 5.85580i −0.0251055 0.238863i −0.999877 0.0156596i \(-0.995015\pi\)
0.974772 0.223204i \(-0.0716515\pi\)
\(602\) 0.847317 + 0.0890566i 0.0345341 + 0.00362968i
\(603\) 3.47758 16.3607i 0.141618 0.666261i
\(604\) −14.8600 10.7964i −0.604645 0.439300i
\(605\) 0 0
\(606\) 42.1504 + 8.95935i 1.71224 + 0.363949i
\(607\) 38.6718 + 4.06457i 1.56964 + 0.164976i 0.849023 0.528356i \(-0.177191\pi\)
0.720618 + 0.693332i \(0.243858\pi\)
\(608\) 23.8976 2.51174i 0.969175 0.101864i
\(609\) 0.513709 0.109192i 0.0208166 0.00442469i
\(610\) 0 0
\(611\) 10.1956 11.3233i 0.412469 0.458093i
\(612\) −47.9859 + 15.5916i −1.93972 + 0.630252i
\(613\) 33.8892 30.5139i 1.36877 1.23245i 0.423609 0.905845i \(-0.360763\pi\)
0.945162 0.326602i \(-0.105904\pi\)
\(614\) −36.1505 + 62.6144i −1.45891 + 2.52691i
\(615\) 0 0
\(616\) 1.11010 3.41654i 0.0447272 0.137656i
\(617\) 2.69523 + 6.05359i 0.108506 + 0.243708i 0.959635 0.281248i \(-0.0907483\pi\)
−0.851129 + 0.524956i \(0.824082\pi\)
\(618\) 19.2743 + 26.5288i 0.775328 + 1.06715i
\(619\) −41.5360 −1.66947 −0.834736 0.550650i \(-0.814380\pi\)
−0.834736 + 0.550650i \(0.814380\pi\)
\(620\) 0 0
\(621\) 8.42469 0.338071
\(622\) −24.0260 33.0689i −0.963353 1.32594i
\(623\) −1.43638 3.22617i −0.0575474 0.129254i
\(624\) −0.602062 + 1.85296i −0.0241018 + 0.0741776i
\(625\) 0 0
\(626\) 25.0006 43.3022i 0.999223 1.73071i
\(627\) 6.42982 5.78944i 0.256782 0.231208i
\(628\) −25.2782 + 8.21338i −1.00871 + 0.327750i
\(629\) 24.7008 27.4330i 0.984884 1.09382i
\(630\) 0 0
\(631\) −10.9012 + 2.31712i −0.433969 + 0.0922429i −0.419716 0.907655i \(-0.637870\pi\)
−0.0142529 + 0.999898i \(0.504537\pi\)
\(632\) −13.7649 + 1.44675i −0.547538 + 0.0575486i
\(633\) −47.0780 4.94810i −1.87118 0.196669i
\(634\) 2.29332 + 0.487460i 0.0910794 + 0.0193595i
\(635\) 0 0
\(636\) 39.2177 + 28.4934i 1.55508 + 1.12983i
\(637\) −1.74786 + 8.22302i −0.0692526 + 0.325808i
\(638\) 0.217089 + 0.0228170i 0.00859464 + 0.000903334i
\(639\) −1.23343 11.7353i −0.0487936 0.464240i
\(640\) 0 0
\(641\) 16.0357 + 7.13957i 0.633374 + 0.281996i 0.698203 0.715900i \(-0.253983\pi\)
−0.0648289 + 0.997896i \(0.520650\pi\)
\(642\) 7.95394 + 7.16176i 0.313917 + 0.282652i
\(643\) 2.08857 0.678617i 0.0823651 0.0267621i −0.267545 0.963545i \(-0.586212\pi\)
0.349910 + 0.936783i \(0.386212\pi\)
\(644\) 25.3674 + 28.1734i 0.999617 + 1.11019i
\(645\) 0 0
\(646\) −23.4341 40.5891i −0.922003 1.59696i
\(647\) 30.8566 + 10.0259i 1.21310 + 0.394160i 0.844564 0.535454i \(-0.179860\pi\)
0.368535 + 0.929614i \(0.379860\pi\)
\(648\) −9.18418 20.6280i −0.360789 0.810345i
\(649\) 5.64084 4.09831i 0.221422 0.160873i
\(650\) 0 0
\(651\) −22.5507 + 2.40186i −0.883832 + 0.0941362i
\(652\) 56.7370i 2.22199i
\(653\) −9.69256 13.3407i −0.379299 0.522061i 0.576099 0.817380i \(-0.304574\pi\)
−0.955399 + 0.295319i \(0.904574\pi\)
\(654\) 63.0636 28.0777i 2.46598 1.09793i
\(655\) 0 0
\(656\) 1.49004 + 2.58083i 0.0581764 + 0.100764i
\(657\) 8.07927 + 4.66457i 0.315202 + 0.181982i
\(658\) 22.0759 19.8772i 0.860607 0.774894i
\(659\) 6.10043 + 18.7752i 0.237639 + 0.731377i 0.996760 + 0.0804282i \(0.0256288\pi\)
−0.759122 + 0.650949i \(0.774371\pi\)
\(660\) 0 0
\(661\) 10.7623 + 4.79169i 0.418605 + 0.186375i 0.605220 0.796058i \(-0.293085\pi\)
−0.186615 + 0.982433i \(0.559752\pi\)
\(662\) 12.8046 + 60.2408i 0.497664 + 2.34132i
\(663\) −20.9964 + 2.20681i −0.815433 + 0.0857055i
\(664\) 0.853219 8.11783i 0.0331113 0.315033i
\(665\) 0 0
\(666\) −54.5336 39.6210i −2.11313 1.53528i
\(667\) −0.539497 + 0.742554i −0.0208894 + 0.0287518i
\(668\) −16.8470 + 79.2591i −0.651832 + 3.06663i
\(669\) −1.65185 + 15.7163i −0.0638644 + 0.607629i
\(670\) 0 0
\(671\) 5.62649 1.19595i 0.217208 0.0461690i
\(672\) 8.58318 19.2781i 0.331104 0.743671i
\(673\) 37.4412 + 33.7122i 1.44325 + 1.29951i 0.881482 + 0.472217i \(0.156546\pi\)
0.561770 + 0.827293i \(0.310120\pi\)
\(674\) −22.7764 70.0985i −0.877314 2.70009i
\(675\) 0 0
\(676\) 15.6348 27.0802i 0.601337 1.04155i
\(677\) 3.44674 1.98998i 0.132469 0.0764810i −0.432301 0.901729i \(-0.642298\pi\)
0.564770 + 0.825248i \(0.308965\pi\)
\(678\) −61.6869 20.0433i −2.36907 0.769758i
\(679\) −17.9849 + 8.00737i −0.690195 + 0.307295i
\(680\) 0 0
\(681\) 33.1770 1.27134
\(682\) −9.22259 1.94693i −0.353151 0.0745519i
\(683\) 5.23244i 0.200214i 0.994977 + 0.100107i \(0.0319185\pi\)
−0.994977 + 0.100107i \(0.968082\pi\)
\(684\) −43.2314 + 31.4095i −1.65300 + 1.20097i
\(685\) 0 0
\(686\) −13.0604 + 40.1958i −0.498648 + 1.53468i
\(687\) 33.6430 19.4238i 1.28356 0.741064i
\(688\) −0.0806701 0.0465749i −0.00307552 0.00177565i
\(689\) 7.27477 + 8.07945i 0.277147 + 0.307803i
\(690\) 0 0
\(691\) 6.15301 6.83361i 0.234072 0.259963i −0.614653 0.788797i \(-0.710704\pi\)
0.848725 + 0.528834i \(0.177371\pi\)
\(692\) 12.1347 27.2550i 0.461293 1.03608i
\(693\) −0.846760 3.98369i −0.0321658 0.151328i
\(694\) 0.752867 + 7.16305i 0.0285785 + 0.271906i
\(695\) 0 0
\(696\) −0.980270 0.208363i −0.0371570 0.00789797i
\(697\) −18.9810 + 26.1251i −0.718957 + 0.989560i
\(698\) −29.8751 + 41.1196i −1.13079 + 1.55640i
\(699\) −32.4854 6.90499i −1.22871 0.261171i
\(700\) 0 0
\(701\) 4.23908 + 40.3321i 0.160108 + 1.52332i 0.719542 + 0.694449i \(0.244352\pi\)
−0.559434 + 0.828875i \(0.688981\pi\)
\(702\) 1.07653 + 5.06468i 0.0406310 + 0.191154i
\(703\) 15.9018 35.7161i 0.599749 1.34706i
\(704\) 6.26569 6.95876i 0.236147 0.262268i
\(705\) 0 0
\(706\) 7.61579 + 8.45820i 0.286624 + 0.318328i
\(707\) 10.1885 + 5.88235i 0.383179 + 0.221229i
\(708\) −69.5782 + 40.1710i −2.61491 + 1.50972i
\(709\) 11.5220 35.4612i 0.432719 1.33177i −0.462687 0.886521i \(-0.653115\pi\)
0.895406 0.445250i \(-0.146885\pi\)
\(710\) 0 0
\(711\) −12.6946 + 9.22314i −0.476083 + 0.345895i
\(712\) 6.73883i 0.252548i
\(713\) 26.4793 29.4906i 0.991658 1.10443i
\(714\) −41.1599 −1.54037
\(715\) 0 0
\(716\) −34.2921 + 15.2678i −1.28156 + 0.570585i
\(717\) −56.6897 18.4196i −2.11712 0.687893i
\(718\) −0.721134 + 0.416347i −0.0269125 + 0.0155379i
\(719\) −9.28994 + 16.0906i −0.346456 + 0.600080i −0.985617 0.168993i \(-0.945948\pi\)
0.639161 + 0.769073i \(0.279282\pi\)
\(720\) 0 0
\(721\) 2.76647 + 8.51433i 0.103029 + 0.317090i
\(722\) −4.30642 3.87752i −0.160268 0.144306i
\(723\) 25.5577 57.4036i 0.950501 2.13486i
\(724\) −48.5887 + 10.3278i −1.80578 + 0.383831i
\(725\) 0 0
\(726\) −6.41630 + 61.0470i −0.238131 + 2.26567i
\(727\) −3.40501 + 16.0193i −0.126285 + 0.594123i 0.868806 + 0.495153i \(0.164888\pi\)
−0.995090 + 0.0989697i \(0.968445\pi\)
\(728\) −5.45681 + 7.51065i −0.202243 + 0.278363i
\(729\) −28.0140 20.3534i −1.03756 0.753829i
\(730\) 0 0
\(731\) 0.105509 1.00385i 0.00390238 0.0371287i
\(732\) −65.9179 + 6.92826i −2.43640 + 0.256076i
\(733\) 0.239377 + 1.12618i 0.00884158 + 0.0415964i 0.982347 0.187067i \(-0.0598980\pi\)
−0.973506 + 0.228663i \(0.926565\pi\)
\(734\) 61.9485 + 27.5812i 2.28656 + 1.01804i
\(735\) 0 0
\(736\) 11.3966 + 35.0751i 0.420084 + 1.29289i
\(737\) 2.63151 2.36943i 0.0969331 0.0872789i
\(738\) 51.0668 + 29.4834i 1.87979 + 1.08530i
\(739\) −10.3579 17.9404i −0.381022 0.659949i 0.610187 0.792257i \(-0.291094\pi\)
−0.991209 + 0.132309i \(0.957761\pi\)
\(740\) 0 0
\(741\) −20.4266 + 9.09449i −0.750389 + 0.334095i
\(742\) 12.4586 + 17.1479i 0.457371 + 0.629517i
\(743\) 35.2367i 1.29271i −0.763038 0.646354i \(-0.776293\pi\)
0.763038 0.646354i \(-0.223707\pi\)
\(744\) 41.1756 + 13.3155i 1.50957 + 0.488171i
\(745\) 0 0
\(746\) −33.0959 + 24.0456i −1.21173 + 0.880370i
\(747\) −3.76392 8.45390i −0.137715 0.309312i
\(748\) −10.1589 3.30083i −0.371447 0.120690i
\(749\) 1.46104 + 2.53060i 0.0533853 + 0.0924660i
\(750\) 0 0
\(751\) −28.8702 32.0636i −1.05349 1.17002i −0.985033 0.172364i \(-0.944859\pi\)
−0.0684559 0.997654i \(-0.521807\pi\)
\(752\) −3.08888 + 1.00364i −0.112640 + 0.0365989i
\(753\) 43.8279 + 39.4629i 1.59718 + 1.43811i
\(754\) −0.515340 0.229444i −0.0187676 0.00835586i
\(755\) 0 0
\(756\) 0.658843 + 6.26847i 0.0239619 + 0.227982i
\(757\) −27.1888 2.85766i −0.988194 0.103863i −0.403382 0.915032i \(-0.632165\pi\)
−0.584813 + 0.811168i \(0.698832\pi\)
\(758\) −1.18042 + 5.55342i −0.0428746 + 0.201709i
\(759\) 10.7433 + 7.80543i 0.389955 + 0.283319i
\(760\) 0 0
\(761\) −16.8163 3.57441i −0.609589 0.129572i −0.107235 0.994234i \(-0.534200\pi\)
−0.502355 + 0.864662i \(0.667533\pi\)
\(762\) 7.51017 + 0.789351i 0.272065 + 0.0285952i
\(763\) 18.7433 1.97000i 0.678554 0.0713189i
\(764\) 7.35260 1.56284i 0.266008 0.0565417i
\(765\) 0 0
\(766\) −29.5188 + 32.7839i −1.06656 + 1.18453i
\(767\) −17.1369 + 5.56812i −0.618778 + 0.201053i
\(768\) −35.0030 + 31.5169i −1.26306 + 1.13727i
\(769\) 7.02837 12.1735i 0.253450 0.438987i −0.711024 0.703168i \(-0.751768\pi\)
0.964473 + 0.264181i \(0.0851015\pi\)
\(770\) 0 0
\(771\) −12.0581 + 37.1111i −0.434263 + 1.33652i
\(772\) −34.7050 77.9486i −1.24906 2.80543i
\(773\) 13.0705 + 17.9900i 0.470112 + 0.647054i 0.976567 0.215212i \(-0.0690443\pi\)
−0.506455 + 0.862266i \(0.669044\pi\)
\(774\) −1.84315 −0.0662507
\(775\) 0 0
\(776\) 37.5668 1.34857
\(777\) −20.1813 27.7771i −0.723998 0.996498i
\(778\) 4.94718 + 11.1116i 0.177365 + 0.398369i
\(779\) −10.5686 + 32.5268i −0.378659 + 1.16539i
\(780\) 0 0
\(781\) 1.24906 2.16343i 0.0446948 0.0774136i
\(782\) 53.4571 48.1330i 1.91162 1.72123i
\(783\) −0.145130 + 0.0471557i −0.00518654 + 0.00168521i
\(784\) 1.19904 1.33166i 0.0428227 0.0475594i
\(785\) 0 0
\(786\) −46.0303 + 9.78404i −1.64185 + 0.348985i
\(787\) −31.8583 + 3.34845i −1.13563 + 0.119359i −0.653630 0.756814i \(-0.726755\pi\)
−0.481997 + 0.876173i \(0.660088\pi\)
\(788\) 20.4859 + 2.15316i 0.729780 + 0.0767030i
\(789\) 16.9273 + 3.59801i 0.602628 + 0.128093i
\(790\) 0 0
\(791\) −14.3261 10.4085i −0.509377 0.370084i
\(792\) −1.61580 + 7.60176i −0.0574151 + 0.270117i
\(793\) −14.7838 1.55384i −0.524990 0.0551786i
\(794\) 4.08247 + 38.8421i 0.144881 + 1.37845i
\(795\) 0 0
\(796\) −13.8782 6.17896i −0.491899 0.219008i
\(797\) −19.3584 17.4304i −0.685709 0.617415i 0.250808 0.968037i \(-0.419304\pi\)
−0.936517 + 0.350622i \(0.885970\pi\)
\(798\) −41.4586 + 13.4707i −1.46762 + 0.476859i
\(799\) −23.5493 26.1541i −0.833114 0.925267i
\(800\) 0 0
\(801\) 3.81994 + 6.61633i 0.134971 + 0.233776i
\(802\) −83.4814 27.1247i −2.94783 0.957808i
\(803\) 0.803320 + 1.80429i 0.0283485 + 0.0636719i
\(804\) −33.0100 + 23.9832i −1.16417 + 0.845822i
\(805\) 0 0
\(806\) 21.1125 + 12.1502i 0.743655 + 0.427973i
\(807\) 26.7486i 0.941594i
\(808\) −13.1956 18.1621i −0.464218 0.638942i
\(809\) 7.97472 3.55057i 0.280376 0.124831i −0.261731 0.965141i \(-0.584293\pi\)
0.542107 + 0.840309i \(0.317627\pi\)
\(810\) 0 0
\(811\) 25.0392 + 43.3692i 0.879245 + 1.52290i 0.852170 + 0.523264i \(0.175286\pi\)
0.0270750 + 0.999633i \(0.491381\pi\)
\(812\) −0.594695 0.343347i −0.0208697 0.0120491i
\(813\) −2.98018 + 2.68337i −0.104520 + 0.0941098i
\(814\) −4.40984 13.5721i −0.154565 0.475701i
\(815\) 0 0
\(816\) 4.11107 + 1.83037i 0.143916 + 0.0640756i
\(817\) −0.222263 1.04567i −0.00777600 0.0365832i
\(818\) 1.14442 0.120284i 0.0400138 0.00420562i
\(819\) −1.10016 + 10.4673i −0.0384427 + 0.365758i
\(820\) 0 0
\(821\) 41.0844 + 29.8495i 1.43385 + 1.04176i 0.989283 + 0.146013i \(0.0466441\pi\)
0.444572 + 0.895743i \(0.353356\pi\)
\(822\) −56.8246 + 78.2123i −1.98199 + 2.72797i
\(823\) −1.31592 + 6.19089i −0.0458699 + 0.215801i −0.995113 0.0987423i \(-0.968518\pi\)
0.949243 + 0.314543i \(0.101851\pi\)
\(824\) 1.78569 16.9897i 0.0622076 0.591866i
\(825\) 0 0
\(826\) −34.3617 + 7.30380i −1.19560 + 0.254132i
\(827\) 1.50389 3.37779i 0.0522953 0.117457i −0.885508 0.464624i \(-0.846190\pi\)
0.937803 + 0.347167i \(0.112856\pi\)
\(828\) −60.9493 54.8790i −2.11813 1.90718i
\(829\) −8.04729 24.7670i −0.279494 0.860193i −0.987995 0.154484i \(-0.950628\pi\)
0.708501 0.705709i \(-0.249372\pi\)
\(830\) 0 0
\(831\) 15.3852 26.6479i 0.533707 0.924407i
\(832\) −20.9570 + 12.0995i −0.726553 + 0.419475i
\(833\) 18.4671 + 6.00033i 0.639848 + 0.207899i
\(834\) 39.3425 17.5164i 1.36232 0.606543i
\(835\) 0 0
\(836\) −11.3130 −0.391267
\(837\) 6.44354 1.37898i 0.222721 0.0476644i
\(838\) 31.1747i 1.07691i
\(839\) 6.06196 4.40427i 0.209282 0.152052i −0.478207 0.878247i \(-0.658713\pi\)
0.687489 + 0.726195i \(0.258713\pi\)
\(840\) 0 0
\(841\) −8.95636 + 27.5648i −0.308840 + 0.950511i
\(842\) 61.7800 35.6687i 2.12908 1.22923i
\(843\) −47.2843 27.2996i −1.62856 0.940249i
\(844\) 41.4157 + 45.9968i 1.42559 + 1.58328i
\(845\) 0 0
\(846\) −43.0016 + 47.7581i −1.47843 + 1.64196i
\(847\) −6.81627 + 15.3096i −0.234210 + 0.526044i
\(848\) −0.481816 2.26677i −0.0165456 0.0778411i
\(849\) 0.183076 + 1.74185i 0.00628315 + 0.0597801i
\(850\) 0 0
\(851\) 58.6937 + 12.4757i 2.01199 + 0.427662i
\(852\) −16.9195 + 23.2877i −0.579652 + 0.797822i
\(853\) −25.6198 + 35.2626i −0.877204 + 1.20737i 0.0999836 + 0.994989i \(0.468121\pi\)
−0.977187 + 0.212378i \(0.931879\pi\)
\(854\) −28.3479 6.02553i −0.970045 0.206189i
\(855\) 0 0
\(856\) −0.582848 5.54543i −0.0199213 0.189539i
\(857\) 8.15487 + 38.3657i 0.278565 + 1.31055i 0.865499 + 0.500911i \(0.167002\pi\)
−0.586933 + 0.809635i \(0.699665\pi\)
\(858\) −3.31959 + 7.45593i −0.113329 + 0.254541i
\(859\) 12.1790 13.5262i 0.415544 0.461508i −0.498639 0.866809i \(-0.666167\pi\)
0.914183 + 0.405302i \(0.132833\pi\)
\(860\) 0 0
\(861\) 20.0975 + 22.3205i 0.684920 + 0.760681i
\(862\) −24.0900 13.9084i −0.820509 0.473721i
\(863\) 38.9258 22.4738i 1.32505 0.765018i 0.340521 0.940237i \(-0.389397\pi\)
0.984530 + 0.175219i \(0.0560633\pi\)
\(864\) −1.89477 + 5.83151i −0.0644614 + 0.198392i
\(865\) 0 0
\(866\) 60.4700 43.9340i 2.05486 1.49294i
\(867\) 5.53740i 0.188060i
\(868\) 24.0135 + 17.3959i 0.815072 + 0.590456i
\(869\) −3.32196 −0.112690
\(870\) 0 0
\(871\) −8.35992 + 3.72208i −0.283265 + 0.126118i
\(872\) −34.2032 11.1133i −1.15827 0.376343i
\(873\) 36.8839 21.2949i 1.24833 0.720724i
\(874\) 38.0922 65.9776i 1.28849 2.23173i
\(875\) 0 0
\(876\) −7.03257 21.6440i −0.237608 0.731283i
\(877\) 31.6959 + 28.5391i 1.07029 + 0.963698i 0.999429 0.0337881i \(-0.0107571\pi\)
0.0708657 + 0.997486i \(0.477424\pi\)
\(878\) −11.6082 + 26.0725i −0.391758 + 0.879903i
\(879\) −22.4140 + 4.76424i −0.756005 + 0.160694i
\(880\) 0 0
\(881\) 0.932030 8.86768i 0.0314009 0.298760i −0.967539 0.252722i \(-0.918674\pi\)
0.998940 0.0460372i \(-0.0146593\pi\)
\(882\) 7.37189 34.6820i 0.248225 1.16780i
\(883\) 27.6661 38.0791i 0.931038 1.28146i −0.0284158 0.999596i \(-0.509046\pi\)
0.959453 0.281867i \(-0.0909538\pi\)
\(884\) 22.3326 + 16.2256i 0.751126 + 0.545725i
\(885\) 0 0
\(886\) 1.13930 10.8397i 0.0382754 0.364166i
\(887\) −3.13928 + 0.329951i −0.105407 + 0.0110787i −0.157085 0.987585i \(-0.550210\pi\)
0.0516783 + 0.998664i \(0.483543\pi\)
\(888\) 13.6219 + 64.0858i 0.457120 + 2.15058i
\(889\) 1.88343 + 0.838557i 0.0631682 + 0.0281243i
\(890\) 0 0
\(891\) −1.67473 5.15429i −0.0561056 0.172675i
\(892\) 15.3554 13.8261i 0.514137 0.462931i
\(893\) −32.2799 18.6368i −1.08021 0.623657i
\(894\) 18.6640 + 32.3270i 0.624217 + 1.08118i
\(895\) 0 0
\(896\) −27.9361 + 12.4379i −0.933279 + 0.415522i
\(897\) −20.1714 27.7636i −0.673505 0.927000i
\(898\) 36.8840i 1.23083i
\(899\) −0.291086 + 0.656241i −0.00970825 + 0.0218869i
\(900\) 0 0
\(901\) 20.3157 14.7602i 0.676815 0.491735i
\(902\) 5.07756 + 11.4044i 0.169064 + 0.379724i
\(903\) −0.892875 0.290113i −0.0297130 0.00965434i
\(904\) 16.8954 + 29.2637i 0.561932 + 0.973295i
\(905\) 0 0
\(906\) 21.6904 + 24.0897i 0.720616 + 0.800326i
\(907\) 25.6435 8.33208i 0.851478 0.276662i 0.149413 0.988775i \(-0.452262\pi\)
0.702065 + 0.712113i \(0.252262\pi\)
\(908\) −32.2374 29.0267i −1.06984 0.963285i
\(909\) −23.2510 10.3520i −0.771185 0.343354i
\(910\) 0 0
\(911\) −0.530798 5.05020i −0.0175861 0.167321i 0.982204 0.187818i \(-0.0601416\pi\)
−0.999790 + 0.0204976i \(0.993475\pi\)
\(912\) 4.73995 + 0.498189i 0.156955 + 0.0164967i
\(913\) 0.407324 1.91631i 0.0134805 0.0634206i
\(914\) 8.50854 + 6.18181i 0.281437 + 0.204476i
\(915\) 0 0
\(916\) −49.6843 10.5607i −1.64161 0.348936i
\(917\) −12.7772 1.34294i −0.421942 0.0443479i
\(918\) 11.8940 1.25011i 0.392560 0.0412598i
\(919\) −48.2001 + 10.2453i −1.58998 + 0.337960i −0.916120 0.400903i \(-0.868696\pi\)
−0.673856 + 0.738863i \(0.735363\pi\)
\(920\) 0 0
\(921\) 53.3098 59.2066i 1.75662 1.95092i
\(922\) −37.2882 + 12.1157i −1.22802 + 0.399009i
\(923\) −4.79762 + 4.31979i −0.157915 + 0.142188i
\(924\) −4.96754 + 8.60403i −0.163420 + 0.283052i
\(925\) 0 0
\(926\) 19.5578 60.1929i 0.642711 1.97806i
\(927\) −7.87748 17.6931i −0.258730 0.581118i
\(928\) −0.392653 0.540441i −0.0128895 0.0177408i
\(929\) 39.9606 1.31107 0.655533 0.755167i \(-0.272444\pi\)
0.655533 + 0.755167i \(0.272444\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) 25.5243 + 35.1311i 0.836075 + 1.15076i
\(933\) 18.3201 + 41.1476i 0.599773 + 1.34711i
\(934\) 16.3367 50.2791i 0.534552 1.64518i
\(935\) 0 0
\(936\) 10.0420 17.3932i 0.328232 0.568515i
\(937\) 33.5079 30.1706i 1.09465 0.985631i 0.0947033 0.995506i \(-0.469810\pi\)
0.999951 + 0.00987411i \(0.00314308\pi\)
\(938\) −16.9677 + 5.51313i −0.554014 + 0.180010i
\(939\) −36.8674 + 40.9454i −1.20312 + 1.33620i
\(940\) 0 0
\(941\) −49.0955 + 10.4356i −1.60047 + 0.340190i −0.919795 0.392398i \(-0.871646\pi\)
−0.680672 + 0.732588i \(0.738312\pi\)
\(942\) 46.6499 4.90310i 1.51993 0.159752i
\(943\) −52.2038 5.48684i −1.69999 0.178676i
\(944\) 3.75686 + 0.798545i 0.122275 + 0.0259904i
\(945\) 0 0
\(946\) −0.315684 0.229358i −0.0102638 0.00745707i
\(947\) −6.30512 + 29.6633i −0.204889 + 0.963926i 0.748722 + 0.662884i \(0.230668\pi\)
−0.953611 + 0.301042i \(0.902666\pi\)
\(948\) 38.0684 + 4.00115i 1.23640 + 0.129951i
\(949\) −0.533519 5.07609i −0.0173188 0.164777i
\(950\) 0 0
\(951\) −2.36017 1.05081i −0.0765337 0.0340750i
\(952\) 15.9353 + 14.3482i 0.516465 + 0.465027i
\(953\) 33.7411 10.9631i 1.09298 0.355131i 0.293583 0.955934i \(-0.405152\pi\)
0.799397 + 0.600803i \(0.205152\pi\)
\(954\) −30.6826 34.0765i −0.993387 1.10327i
\(955\) 0 0
\(956\) 38.9689 + 67.4962i 1.26035 + 2.18298i
\(957\) −0.228761 0.0743291i −0.00739481 0.00240272i
\(958\) 8.49116 + 19.0715i 0.274337 + 0.616171i
\(959\) −21.3530 + 15.5139i −0.689524 + 0.500969i
\(960\) 0 0
\(961\) 15.4253 26.8898i 0.497592 0.867411i
\(962\) 36.8791i 1.18903i
\(963\) −3.71570 5.11422i −0.119737 0.164804i
\(964\) −75.0567 + 33.4174i −2.41741 + 1.07630i
\(965\) 0 0
\(966\) −33.4527 57.9418i −1.07632 1.86425i
\(967\) −30.6957 17.7222i −0.987107 0.569906i −0.0826987 0.996575i \(-0.526354\pi\)
−0.904408 + 0.426668i \(0.859687\pi\)
\(968\) 23.7649 21.3980i 0.763832 0.687757i
\(969\) 15.9593 + 49.1176i 0.512686 + 1.57789i
\(970\) 0 0
\(971\) −36.6306 16.3090i −1.17553 0.523381i −0.276394 0.961044i \(-0.589140\pi\)
−0.899139 + 0.437663i \(0.855806\pi\)
\(972\) 15.4379 + 72.6297i 0.495171 + 2.32960i
\(973\) 11.6931 1.22899i 0.374863 0.0393997i
\(974\) −5.69784 + 54.2113i −0.182571 + 1.73704i
\(975\) 0 0
\(976\) 2.56345 + 1.86246i 0.0820540 + 0.0596157i
\(977\) 22.7302 31.2854i 0.727202 1.00091i −0.272052 0.962283i \(-0.587702\pi\)
0.999254 0.0386252i \(-0.0122978\pi\)
\(978\) 20.8181 97.9415i 0.665690 3.13182i
\(979\) −0.169065 + 1.60855i −0.00540335 + 0.0514095i
\(980\) 0 0
\(981\) −39.8810 + 8.47697i −1.27330 + 0.270649i
\(982\) 8.65997 19.4506i 0.276351 0.620694i
\(983\) −16.0368 14.4396i −0.511493 0.460551i 0.372512 0.928027i \(-0.378497\pi\)
−0.884005 + 0.467477i \(0.845163\pi\)
\(984\) −17.7109 54.5086i −0.564604 1.73767i
\(985\) 0 0
\(986\) −0.651478 + 1.12839i −0.0207473 + 0.0359354i
\(987\) −28.3483 + 16.3669i −0.902338 + 0.520965i
\(988\) 27.8049 + 9.03438i 0.884593 + 0.287422i
\(989\) 1.49890 0.667352i 0.0476621 0.0212206i
\(990\) 0 0
\(991\) 46.8764 1.48908 0.744538 0.667580i \(-0.232670\pi\)
0.744538 + 0.667580i \(0.232670\pi\)
\(992\) 14.4578 + 24.9614i 0.459034 + 0.792525i
\(993\) 67.8639i 2.15360i
\(994\) −10.1825 + 7.39800i −0.322968 + 0.234650i
\(995\) 0 0
\(996\) −6.97589 + 21.4696i −0.221039 + 0.680290i
\(997\) −38.5718 + 22.2695i −1.22158 + 0.705281i −0.965255 0.261309i \(-0.915846\pi\)
−0.256327 + 0.966590i \(0.582512\pi\)
\(998\) −56.7818 32.7830i −1.79740 1.03773i
\(999\) 6.67543 + 7.41382i 0.211201 + 0.234563i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.ck.a.49.4 32
5.2 odd 4 31.2.g.a.18.1 16
5.3 odd 4 775.2.bl.a.576.2 16
5.4 even 2 inner 775.2.ck.a.49.1 32
15.2 even 4 279.2.y.c.235.2 16
20.7 even 4 496.2.bg.c.49.2 16
31.19 even 15 inner 775.2.ck.a.174.1 32
155.2 odd 20 961.2.g.k.816.1 16
155.7 odd 60 961.2.g.t.448.2 16
155.12 even 60 961.2.g.l.732.1 16
155.17 even 60 961.2.c.i.521.8 16
155.19 even 30 inner 775.2.ck.a.174.4 32
155.22 even 60 961.2.a.j.1.8 8
155.27 even 20 961.2.g.m.846.2 16
155.37 even 12 961.2.g.j.338.1 16
155.42 even 60 961.2.d.q.628.4 16
155.47 odd 20 961.2.g.t.547.2 16
155.52 even 60 961.2.d.n.374.1 16
155.57 even 12 961.2.d.n.388.1 16
155.67 odd 12 961.2.d.o.388.1 16
155.72 odd 60 961.2.d.o.374.1 16
155.77 even 20 961.2.g.n.547.2 16
155.82 odd 60 961.2.d.p.628.4 16
155.87 odd 12 961.2.g.k.338.1 16
155.92 even 4 961.2.g.l.235.1 16
155.97 odd 20 961.2.g.s.846.2 16
155.102 odd 60 961.2.a.i.1.8 8
155.107 odd 60 961.2.c.j.521.8 16
155.112 odd 60 31.2.g.a.19.1 yes 16
155.117 even 60 961.2.g.n.448.2 16
155.122 even 20 961.2.g.j.816.1 16
155.127 even 60 961.2.g.m.844.2 16
155.132 odd 20 961.2.c.j.439.8 16
155.137 even 60 961.2.d.q.531.4 16
155.142 odd 60 961.2.d.p.531.4 16
155.143 odd 60 775.2.bl.a.701.2 16
155.147 even 20 961.2.c.i.439.8 16
155.152 odd 60 961.2.g.s.844.2 16
465.257 even 60 8649.2.a.bf.1.1 8
465.332 odd 60 8649.2.a.be.1.1 8
465.422 even 60 279.2.y.c.19.2 16
620.267 even 60 496.2.bg.c.81.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 5.2 odd 4
31.2.g.a.19.1 yes 16 155.112 odd 60
279.2.y.c.19.2 16 465.422 even 60
279.2.y.c.235.2 16 15.2 even 4
496.2.bg.c.49.2 16 20.7 even 4
496.2.bg.c.81.2 16 620.267 even 60
775.2.bl.a.576.2 16 5.3 odd 4
775.2.bl.a.701.2 16 155.143 odd 60
775.2.ck.a.49.1 32 5.4 even 2 inner
775.2.ck.a.49.4 32 1.1 even 1 trivial
775.2.ck.a.174.1 32 31.19 even 15 inner
775.2.ck.a.174.4 32 155.19 even 30 inner
961.2.a.i.1.8 8 155.102 odd 60
961.2.a.j.1.8 8 155.22 even 60
961.2.c.i.439.8 16 155.147 even 20
961.2.c.i.521.8 16 155.17 even 60
961.2.c.j.439.8 16 155.132 odd 20
961.2.c.j.521.8 16 155.107 odd 60
961.2.d.n.374.1 16 155.52 even 60
961.2.d.n.388.1 16 155.57 even 12
961.2.d.o.374.1 16 155.72 odd 60
961.2.d.o.388.1 16 155.67 odd 12
961.2.d.p.531.4 16 155.142 odd 60
961.2.d.p.628.4 16 155.82 odd 60
961.2.d.q.531.4 16 155.137 even 60
961.2.d.q.628.4 16 155.42 even 60
961.2.g.j.338.1 16 155.37 even 12
961.2.g.j.816.1 16 155.122 even 20
961.2.g.k.338.1 16 155.87 odd 12
961.2.g.k.816.1 16 155.2 odd 20
961.2.g.l.235.1 16 155.92 even 4
961.2.g.l.732.1 16 155.12 even 60
961.2.g.m.844.2 16 155.127 even 60
961.2.g.m.846.2 16 155.27 even 20
961.2.g.n.448.2 16 155.117 even 60
961.2.g.n.547.2 16 155.77 even 20
961.2.g.s.844.2 16 155.152 odd 60
961.2.g.s.846.2 16 155.97 odd 20
961.2.g.t.448.2 16 155.7 odd 60
961.2.g.t.547.2 16 155.47 odd 20
8649.2.a.be.1.1 8 465.332 odd 60
8649.2.a.bf.1.1 8 465.257 even 60