Properties

Label 961.2.c.i.439.8
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(439,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.439"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,-3,16,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 19x^{14} + 140x^{12} + 511x^{10} + 979x^{8} + 956x^{6} + 410x^{4} + 44x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.8
Root \(1.83925i\) of defining polynomial
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.i.521.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30753 q^{2} +(-1.27136 + 2.20206i) q^{3} +3.32468 q^{4} +(1.24923 + 2.16373i) q^{5} +(-2.93370 + 5.08132i) q^{6} +(-0.800939 + 1.38727i) q^{7} +3.05673 q^{8} +(-1.73272 - 3.00116i) q^{9} +(2.88263 + 4.99286i) q^{10} +(0.366828 + 0.635365i) q^{11} +(-4.22687 + 7.32116i) q^{12} +(-0.947988 - 1.64196i) q^{13} +(-1.84819 + 3.20116i) q^{14} -6.35289 q^{15} +0.404135 q^{16} +(-2.18962 + 3.79253i) q^{17} +(-3.99830 - 6.92527i) q^{18} +(2.31901 - 4.01665i) q^{19} +(4.15329 + 7.19371i) q^{20} +(-2.03657 - 3.52744i) q^{21} +(0.846466 + 1.46612i) q^{22} +7.11846 q^{23} +(-3.88622 + 6.73112i) q^{24} +(-0.621150 + 1.07586i) q^{25} +(-2.18751 - 3.78887i) q^{26} +1.18350 q^{27} +(-2.66287 + 4.61222i) q^{28} +0.128939 q^{29} -14.6595 q^{30} -5.18091 q^{32} -1.86549 q^{33} +(-5.05261 + 8.75137i) q^{34} -4.00223 q^{35} +(-5.76075 - 9.97791i) q^{36} +(4.21474 - 7.30014i) q^{37} +(5.35118 - 9.26852i) q^{38} +4.82094 q^{39} +(3.81856 + 6.61394i) q^{40} +(3.68699 + 6.38605i) q^{41} +(-4.69943 - 8.13966i) q^{42} +(0.115246 - 0.199612i) q^{43} +(1.21959 + 2.11239i) q^{44} +(4.32914 - 7.49829i) q^{45} +16.4260 q^{46} -8.03652 q^{47} +(-0.513802 + 0.889932i) q^{48} +(2.21699 + 3.83994i) q^{49} +(-1.43332 + 2.48258i) q^{50} +(-5.56760 - 9.64336i) q^{51} +(-3.15176 - 5.45900i) q^{52} +(2.86712 + 4.96600i) q^{53} +2.73096 q^{54} +(-0.916506 + 1.58743i) q^{55} +(-2.44826 + 4.24051i) q^{56} +(5.89661 + 10.2132i) q^{57} +0.297530 q^{58} +(-4.75186 + 8.23046i) q^{59} -21.1213 q^{60} +7.84044 q^{61} +5.55122 q^{63} -12.7634 q^{64} +(2.36851 - 4.10238i) q^{65} -4.30466 q^{66} +(-2.41329 - 4.17994i) q^{67} +(-7.27978 + 12.6090i) q^{68} +(-9.05014 + 15.6753i) q^{69} -9.23525 q^{70} +(1.70251 + 2.94883i) q^{71} +(-5.29647 - 9.17376i) q^{72} +(1.34602 + 2.33138i) q^{73} +(9.72562 - 16.8453i) q^{74} +(-1.57941 - 2.73562i) q^{75} +(7.70998 - 13.3541i) q^{76} -1.17523 q^{77} +11.1245 q^{78} +(2.26397 - 3.92132i) q^{79} +(0.504858 + 0.874439i) q^{80} +(3.69351 - 6.39735i) q^{81} +(8.50783 + 14.7360i) q^{82} +(1.33517 + 2.31259i) q^{83} +(-6.77093 - 11.7276i) q^{84} -10.9414 q^{85} +(0.265933 - 0.460609i) q^{86} +(-0.163928 + 0.283932i) q^{87} +(1.12130 + 1.94214i) q^{88} +2.20459 q^{89} +(9.98960 - 17.3025i) q^{90} +3.03712 q^{91} +23.6666 q^{92} -18.5445 q^{94} +11.5879 q^{95} +(6.58682 - 11.4087i) q^{96} +12.2899 q^{97} +(5.11577 + 8.86077i) q^{98} +(1.27122 - 2.20182i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 3 q^{3} + 16 q^{4} - 3 q^{5} - 11 q^{6} + 2 q^{7} - 18 q^{8} - 5 q^{9} + 13 q^{10} - 18 q^{11} - 8 q^{13} + 9 q^{14} + 36 q^{15} + 8 q^{16} - 14 q^{17} - 23 q^{18} + 6 q^{19} + 7 q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30753 1.63167 0.815834 0.578286i \(-0.196278\pi\)
0.815834 + 0.578286i \(0.196278\pi\)
\(3\) −1.27136 + 2.20206i −0.734021 + 1.27136i 0.221130 + 0.975244i \(0.429025\pi\)
−0.955151 + 0.296118i \(0.904308\pi\)
\(4\) 3.32468 1.66234
\(5\) 1.24923 + 2.16373i 0.558673 + 0.967649i 0.997608 + 0.0691304i \(0.0220225\pi\)
−0.438935 + 0.898519i \(0.644644\pi\)
\(6\) −2.93370 + 5.08132i −1.19768 + 2.07444i
\(7\) −0.800939 + 1.38727i −0.302727 + 0.524338i −0.976753 0.214370i \(-0.931230\pi\)
0.674026 + 0.738708i \(0.264564\pi\)
\(8\) 3.05673 1.08072
\(9\) −1.73272 3.00116i −0.577574 1.00039i
\(10\) 2.88263 + 4.99286i 0.911568 + 1.57888i
\(11\) 0.366828 + 0.635365i 0.110603 + 0.191570i 0.916014 0.401147i \(-0.131388\pi\)
−0.805411 + 0.592717i \(0.798055\pi\)
\(12\) −4.22687 + 7.32116i −1.22019 + 2.11344i
\(13\) −0.947988 1.64196i −0.262925 0.455399i 0.704093 0.710108i \(-0.251354\pi\)
−0.967018 + 0.254709i \(0.918020\pi\)
\(14\) −1.84819 + 3.20116i −0.493949 + 0.855545i
\(15\) −6.35289 −1.64031
\(16\) 0.404135 0.101034
\(17\) −2.18962 + 3.79253i −0.531061 + 0.919824i 0.468282 + 0.883579i \(0.344873\pi\)
−0.999343 + 0.0362453i \(0.988460\pi\)
\(18\) −3.99830 6.92527i −0.942409 1.63230i
\(19\) 2.31901 4.01665i 0.532018 0.921482i −0.467283 0.884108i \(-0.654767\pi\)
0.999301 0.0373747i \(-0.0118995\pi\)
\(20\) 4.15329 + 7.19371i 0.928704 + 1.60856i
\(21\) −2.03657 3.52744i −0.444415 0.769750i
\(22\) 0.846466 + 1.46612i 0.180467 + 0.312578i
\(23\) 7.11846 1.48430 0.742151 0.670233i \(-0.233806\pi\)
0.742151 + 0.670233i \(0.233806\pi\)
\(24\) −3.88622 + 6.73112i −0.793270 + 1.37398i
\(25\) −0.621150 + 1.07586i −0.124230 + 0.215173i
\(26\) −2.18751 3.78887i −0.429005 0.743059i
\(27\) 1.18350 0.227765
\(28\) −2.66287 + 4.61222i −0.503234 + 0.871628i
\(29\) 0.128939 0.0239434 0.0119717 0.999928i \(-0.496189\pi\)
0.0119717 + 0.999928i \(0.496189\pi\)
\(30\) −14.6595 −2.67644
\(31\) 0 0
\(32\) −5.18091 −0.915865
\(33\) −1.86549 −0.324740
\(34\) −5.05261 + 8.75137i −0.866515 + 1.50085i
\(35\) −4.00223 −0.676500
\(36\) −5.76075 9.97791i −0.960125 1.66298i
\(37\) 4.21474 7.30014i 0.692899 1.20014i −0.277985 0.960585i \(-0.589667\pi\)
0.970884 0.239550i \(-0.0770000\pi\)
\(38\) 5.35118 9.26852i 0.868077 1.50355i
\(39\) 4.82094 0.771969
\(40\) 3.81856 + 6.61394i 0.603768 + 1.04576i
\(41\) 3.68699 + 6.38605i 0.575811 + 0.997334i 0.995953 + 0.0898756i \(0.0286470\pi\)
−0.420142 + 0.907458i \(0.638020\pi\)
\(42\) −4.69943 8.13966i −0.725138 1.25598i
\(43\) 0.115246 0.199612i 0.0175748 0.0304405i −0.857104 0.515143i \(-0.827739\pi\)
0.874679 + 0.484703i \(0.161072\pi\)
\(44\) 1.21959 + 2.11239i 0.183860 + 0.318454i
\(45\) 4.32914 7.49829i 0.645350 1.11778i
\(46\) 16.4260 2.42189
\(47\) −8.03652 −1.17225 −0.586124 0.810222i \(-0.699347\pi\)
−0.586124 + 0.810222i \(0.699347\pi\)
\(48\) −0.513802 + 0.889932i −0.0741610 + 0.128451i
\(49\) 2.21699 + 3.83994i 0.316713 + 0.548563i
\(50\) −1.43332 + 2.48258i −0.202702 + 0.351090i
\(51\) −5.56760 9.64336i −0.779620 1.35034i
\(52\) −3.15176 5.45900i −0.437070 0.757027i
\(53\) 2.86712 + 4.96600i 0.393829 + 0.682132i 0.992951 0.118526i \(-0.0378168\pi\)
−0.599122 + 0.800658i \(0.704483\pi\)
\(54\) 2.73096 0.371636
\(55\) −0.916506 + 1.58743i −0.123582 + 0.214050i
\(56\) −2.44826 + 4.24051i −0.327162 + 0.566662i
\(57\) 5.89661 + 10.2132i 0.781025 + 1.35278i
\(58\) 0.297530 0.0390676
\(59\) −4.75186 + 8.23046i −0.618639 + 1.07151i 0.371095 + 0.928595i \(0.378982\pi\)
−0.989734 + 0.142920i \(0.954351\pi\)
\(60\) −21.1213 −2.72675
\(61\) 7.84044 1.00387 0.501933 0.864907i \(-0.332623\pi\)
0.501933 + 0.864907i \(0.332623\pi\)
\(62\) 0 0
\(63\) 5.55122 0.699388
\(64\) −12.7634 −1.59542
\(65\) 2.36851 4.10238i 0.293777 0.508837i
\(66\) −4.30466 −0.529867
\(67\) −2.41329 4.17994i −0.294830 0.510661i 0.680115 0.733105i \(-0.261930\pi\)
−0.974945 + 0.222444i \(0.928596\pi\)
\(68\) −7.27978 + 12.6090i −0.882804 + 1.52906i
\(69\) −9.05014 + 15.6753i −1.08951 + 1.88709i
\(70\) −9.23525 −1.10382
\(71\) 1.70251 + 2.94883i 0.202051 + 0.349962i 0.949189 0.314707i \(-0.101906\pi\)
−0.747138 + 0.664668i \(0.768573\pi\)
\(72\) −5.29647 9.17376i −0.624195 1.08114i
\(73\) 1.34602 + 2.33138i 0.157540 + 0.272867i 0.933981 0.357323i \(-0.116310\pi\)
−0.776441 + 0.630190i \(0.782977\pi\)
\(74\) 9.72562 16.8453i 1.13058 1.95822i
\(75\) −1.57941 2.73562i −0.182375 0.315882i
\(76\) 7.70998 13.3541i 0.884395 1.53182i
\(77\) −1.17523 −0.133930
\(78\) 11.1245 1.25960
\(79\) 2.26397 3.92132i 0.254717 0.441182i −0.710102 0.704099i \(-0.751351\pi\)
0.964819 + 0.262917i \(0.0846844\pi\)
\(80\) 0.504858 + 0.874439i 0.0564448 + 0.0977653i
\(81\) 3.69351 6.39735i 0.410390 0.710817i
\(82\) 8.50783 + 14.7360i 0.939532 + 1.62732i
\(83\) 1.33517 + 2.31259i 0.146554 + 0.253840i 0.929952 0.367681i \(-0.119848\pi\)
−0.783397 + 0.621521i \(0.786515\pi\)
\(84\) −6.77093 11.7276i −0.738769 1.27959i
\(85\) −10.9414 −1.18676
\(86\) 0.265933 0.460609i 0.0286763 0.0496688i
\(87\) −0.163928 + 0.283932i −0.0175749 + 0.0304407i
\(88\) 1.12130 + 1.94214i 0.119531 + 0.207033i
\(89\) 2.20459 0.233686 0.116843 0.993150i \(-0.462723\pi\)
0.116843 + 0.993150i \(0.462723\pi\)
\(90\) 9.98960 17.3025i 1.05300 1.82384i
\(91\) 3.03712 0.318377
\(92\) 23.6666 2.46741
\(93\) 0 0
\(94\) −18.5445 −1.91272
\(95\) 11.5879 1.18890
\(96\) 6.58682 11.4087i 0.672264 1.16440i
\(97\) 12.2899 1.24785 0.623923 0.781485i \(-0.285538\pi\)
0.623923 + 0.781485i \(0.285538\pi\)
\(98\) 5.11577 + 8.86077i 0.516771 + 0.895073i
\(99\) 1.27122 2.20182i 0.127763 0.221292i
\(100\) −2.06512 + 3.57690i −0.206512 + 0.357690i
\(101\) 7.34432 0.730787 0.365394 0.930853i \(-0.380934\pi\)
0.365394 + 0.930853i \(0.380934\pi\)
\(102\) −12.8474 22.2523i −1.27208 2.20331i
\(103\) −2.79438 4.84000i −0.275338 0.476899i 0.694882 0.719123i \(-0.255456\pi\)
−0.970220 + 0.242224i \(0.922123\pi\)
\(104\) −2.89775 5.01904i −0.284147 0.492158i
\(105\) 5.08828 8.81316i 0.496565 0.860076i
\(106\) 6.61596 + 11.4592i 0.642598 + 1.11301i
\(107\) −0.912080 + 1.57977i −0.0881741 + 0.152722i −0.906739 0.421692i \(-0.861437\pi\)
0.818565 + 0.574414i \(0.194770\pi\)
\(108\) 3.93476 0.378622
\(109\) 11.7653 1.12691 0.563455 0.826147i \(-0.309472\pi\)
0.563455 + 0.826147i \(0.309472\pi\)
\(110\) −2.11486 + 3.66305i −0.201644 + 0.349258i
\(111\) 10.7169 + 18.5622i 1.01720 + 1.76185i
\(112\) −0.323688 + 0.560644i −0.0305856 + 0.0529759i
\(113\) −5.52727 9.57351i −0.519962 0.900600i −0.999731 0.0232051i \(-0.992613\pi\)
0.479769 0.877395i \(-0.340720\pi\)
\(114\) 13.6066 + 23.5673i 1.27437 + 2.20728i
\(115\) 8.89259 + 15.4024i 0.829239 + 1.43628i
\(116\) 0.428681 0.0398020
\(117\) −3.28520 + 5.69013i −0.303717 + 0.526053i
\(118\) −10.9650 + 18.9920i −1.00941 + 1.74836i
\(119\) −3.50750 6.07518i −0.321532 0.556911i
\(120\) −19.4191 −1.77271
\(121\) 5.23087 9.06014i 0.475534 0.823649i
\(122\) 18.0920 1.63797
\(123\) −18.7500 −1.69063
\(124\) 0 0
\(125\) 9.38846 0.839730
\(126\) 12.8096 1.14117
\(127\) −0.643516 + 1.11460i −0.0571028 + 0.0989050i −0.893164 0.449732i \(-0.851520\pi\)
0.836061 + 0.548637i \(0.184853\pi\)
\(128\) −19.0900 −1.68733
\(129\) 0.293038 + 0.507557i 0.0258006 + 0.0446879i
\(130\) 5.46540 9.46635i 0.479347 0.830254i
\(131\) 4.01018 6.94583i 0.350371 0.606860i −0.635944 0.771736i \(-0.719389\pi\)
0.986314 + 0.164876i \(0.0527223\pi\)
\(132\) −6.20214 −0.539827
\(133\) 3.71478 + 6.43418i 0.322112 + 0.557914i
\(134\) −5.56873 9.64532i −0.481065 0.833229i
\(135\) 1.47846 + 2.56077i 0.127246 + 0.220396i
\(136\) −6.69308 + 11.5928i −0.573927 + 0.994071i
\(137\) −8.23838 14.2693i −0.703852 1.21911i −0.967104 0.254381i \(-0.918128\pi\)
0.263252 0.964727i \(-0.415205\pi\)
\(138\) −20.8834 + 36.1712i −1.77772 + 3.07910i
\(139\) −7.33982 −0.622555 −0.311278 0.950319i \(-0.600757\pi\)
−0.311278 + 0.950319i \(0.600757\pi\)
\(140\) −13.3061 −1.12457
\(141\) 10.2173 17.6969i 0.860454 1.49035i
\(142\) 3.92858 + 6.80451i 0.329679 + 0.571022i
\(143\) 0.695498 1.20464i 0.0581604 0.100737i
\(144\) −0.700254 1.21288i −0.0583545 0.101073i
\(145\) 0.161074 + 0.278989i 0.0133765 + 0.0231688i
\(146\) 3.10598 + 5.37972i 0.257053 + 0.445229i
\(147\) −11.2744 −0.929897
\(148\) 14.0127 24.2706i 1.15183 1.99503i
\(149\) 3.18096 5.50959i 0.260595 0.451363i −0.705805 0.708406i \(-0.749415\pi\)
0.966400 + 0.257043i \(0.0827480\pi\)
\(150\) −3.64454 6.31252i −0.297575 0.515415i
\(151\) 5.52473 0.449596 0.224798 0.974405i \(-0.427828\pi\)
0.224798 + 0.974405i \(0.427828\pi\)
\(152\) 7.08861 12.2778i 0.574962 0.995863i
\(153\) 15.1760 1.22691
\(154\) −2.71187 −0.218529
\(155\) 0 0
\(156\) 16.0281 1.28327
\(157\) 7.99448 0.638029 0.319014 0.947750i \(-0.396648\pi\)
0.319014 + 0.947750i \(0.396648\pi\)
\(158\) 5.22418 9.04854i 0.415613 0.719863i
\(159\) −14.5806 −1.15632
\(160\) −6.47215 11.2101i −0.511669 0.886236i
\(161\) −5.70146 + 9.87521i −0.449338 + 0.778276i
\(162\) 8.52288 14.7621i 0.669621 1.15982i
\(163\) −17.0654 −1.33667 −0.668333 0.743863i \(-0.732992\pi\)
−0.668333 + 0.743863i \(0.732992\pi\)
\(164\) 12.2581 + 21.2316i 0.957194 + 1.65791i
\(165\) −2.33042 4.03641i −0.181423 0.314234i
\(166\) 3.08095 + 5.33636i 0.239128 + 0.414182i
\(167\) −12.1861 + 21.1070i −0.942989 + 1.63331i −0.183261 + 0.983064i \(0.558665\pi\)
−0.759728 + 0.650241i \(0.774668\pi\)
\(168\) −6.22524 10.7824i −0.480288 0.831883i
\(169\) 4.70264 8.14521i 0.361741 0.626554i
\(170\) −25.2475 −1.93639
\(171\) −16.0728 −1.22912
\(172\) 0.383156 0.663645i 0.0292153 0.0506025i
\(173\) −4.48680 7.77137i −0.341125 0.590846i 0.643517 0.765432i \(-0.277475\pi\)
−0.984642 + 0.174586i \(0.944141\pi\)
\(174\) −0.378269 + 0.655180i −0.0286765 + 0.0496691i
\(175\) −0.995006 1.72340i −0.0752154 0.130277i
\(176\) 0.148248 + 0.256774i 0.0111746 + 0.0193550i
\(177\) −12.0827 20.9278i −0.908189 1.57303i
\(178\) 5.08714 0.381297
\(179\) −5.64526 + 9.77788i −0.421946 + 0.730833i −0.996130 0.0878940i \(-0.971986\pi\)
0.574183 + 0.818727i \(0.305320\pi\)
\(180\) 14.3930 24.9294i 1.07279 1.85813i
\(181\) −7.47052 12.9393i −0.555279 0.961772i −0.997882 0.0650542i \(-0.979278\pi\)
0.442602 0.896718i \(-0.354055\pi\)
\(182\) 7.00824 0.519485
\(183\) −9.96803 + 17.2651i −0.736858 + 1.27628i
\(184\) 21.7592 1.60411
\(185\) 21.0607 1.54841
\(186\) 0 0
\(187\) −3.21286 −0.234947
\(188\) −26.7189 −1.94867
\(189\) −0.947911 + 1.64183i −0.0689504 + 0.119426i
\(190\) 26.7394 1.93988
\(191\) −1.13046 1.95802i −0.0817975 0.141677i 0.822225 0.569163i \(-0.192733\pi\)
−0.904022 + 0.427486i \(0.859399\pi\)
\(192\) 16.2269 28.1057i 1.17107 2.02836i
\(193\) −12.8321 + 22.2259i −0.923677 + 1.59985i −0.130001 + 0.991514i \(0.541498\pi\)
−0.793676 + 0.608341i \(0.791835\pi\)
\(194\) 28.3592 2.03607
\(195\) 6.02246 + 10.4312i 0.431278 + 0.746995i
\(196\) 7.37079 + 12.7666i 0.526485 + 0.911899i
\(197\) −3.09786 5.36564i −0.220713 0.382286i 0.734312 0.678812i \(-0.237505\pi\)
−0.955025 + 0.296526i \(0.904172\pi\)
\(198\) 2.93338 5.08077i 0.208466 0.361074i
\(199\) −2.28467 3.95716i −0.161956 0.280515i 0.773614 0.633657i \(-0.218447\pi\)
−0.935570 + 0.353141i \(0.885113\pi\)
\(200\) −1.89869 + 3.28863i −0.134258 + 0.232541i
\(201\) 12.2727 0.865647
\(202\) 16.9472 1.19240
\(203\) −0.103272 + 0.178873i −0.00724829 + 0.0125544i
\(204\) −18.5105 32.0611i −1.29599 2.24473i
\(205\) −9.21179 + 15.9553i −0.643380 + 1.11437i
\(206\) −6.44810 11.1684i −0.449260 0.778141i
\(207\) −12.3343 21.3637i −0.857295 1.48488i
\(208\) −0.383115 0.663575i −0.0265643 0.0460107i
\(209\) 3.40272 0.235371
\(210\) 11.7413 20.3366i 0.810230 1.40336i
\(211\) 9.30839 16.1226i 0.640816 1.10993i −0.344435 0.938810i \(-0.611930\pi\)
0.985251 0.171115i \(-0.0547371\pi\)
\(212\) 9.53225 + 16.5103i 0.654678 + 1.13394i
\(213\) −8.65802 −0.593238
\(214\) −2.10465 + 3.64536i −0.143871 + 0.249192i
\(215\) 0.575874 0.0392743
\(216\) 3.61764 0.246149
\(217\) 0 0
\(218\) 27.1487 1.83874
\(219\) −6.84513 −0.462551
\(220\) −3.04709 + 5.27771i −0.205435 + 0.355823i
\(221\) 8.30293 0.558516
\(222\) 24.7296 + 42.8329i 1.65974 + 2.87475i
\(223\) 3.10748 5.38231i 0.208092 0.360426i −0.743021 0.669268i \(-0.766608\pi\)
0.951113 + 0.308842i \(0.0999413\pi\)
\(224\) 4.14960 7.18731i 0.277257 0.480223i
\(225\) 4.30512 0.287008
\(226\) −12.7543 22.0911i −0.848405 1.46948i
\(227\) 6.52390 + 11.2997i 0.433006 + 0.749989i 0.997131 0.0757009i \(-0.0241194\pi\)
−0.564124 + 0.825690i \(0.690786\pi\)
\(228\) 19.6043 + 33.9557i 1.29833 + 2.24877i
\(229\) 7.63897 13.2311i 0.504797 0.874334i −0.495187 0.868786i \(-0.664901\pi\)
0.999985 0.00554817i \(-0.00176605\pi\)
\(230\) 20.5199 + 35.5415i 1.35304 + 2.34354i
\(231\) 1.49414 2.58793i 0.0983073 0.170273i
\(232\) 0.394132 0.0258760
\(233\) 13.0613 0.855671 0.427836 0.903857i \(-0.359276\pi\)
0.427836 + 0.903857i \(0.359276\pi\)
\(234\) −7.58069 + 13.1301i −0.495565 + 0.858344i
\(235\) −10.0395 17.3889i −0.654902 1.13432i
\(236\) −15.7984 + 27.3636i −1.02839 + 1.78122i
\(237\) 5.75666 + 9.97082i 0.373935 + 0.647675i
\(238\) −8.09366 14.0186i −0.524634 0.908693i
\(239\) −11.7211 20.3016i −0.758176 1.31320i −0.943780 0.330574i \(-0.892758\pi\)
0.185604 0.982625i \(-0.440576\pi\)
\(240\) −2.56743 −0.165727
\(241\) 12.3560 21.4013i 0.795923 1.37858i −0.126329 0.991988i \(-0.540319\pi\)
0.922252 0.386590i \(-0.126347\pi\)
\(242\) 12.0704 20.9065i 0.775914 1.34392i
\(243\) 11.1668 + 19.3415i 0.716353 + 1.24076i
\(244\) 26.0669 1.66876
\(245\) −5.53907 + 9.59394i −0.353878 + 0.612935i
\(246\) −43.2661 −2.75855
\(247\) −8.79358 −0.559522
\(248\) 0 0
\(249\) −6.78996 −0.430296
\(250\) 21.6641 1.37016
\(251\) −11.5971 + 20.0867i −0.732001 + 1.26786i 0.224026 + 0.974583i \(0.428080\pi\)
−0.956027 + 0.293279i \(0.905253\pi\)
\(252\) 18.4560 1.16262
\(253\) 2.61125 + 4.52282i 0.164168 + 0.284348i
\(254\) −1.48493 + 2.57198i −0.0931729 + 0.161380i
\(255\) 13.9104 24.0936i 0.871104 1.50880i
\(256\) −18.5239 −1.15774
\(257\) −7.67305 13.2901i −0.478632 0.829015i 0.521068 0.853515i \(-0.325534\pi\)
−0.999700 + 0.0245003i \(0.992201\pi\)
\(258\) 0.676194 + 1.17120i 0.0420980 + 0.0729159i
\(259\) 6.75150 + 11.6939i 0.419518 + 0.726626i
\(260\) 7.87453 13.6391i 0.488358 0.845861i
\(261\) −0.223416 0.386967i −0.0138291 0.0239527i
\(262\) 9.25359 16.0277i 0.571689 0.990194i
\(263\) 6.80588 0.419668 0.209834 0.977737i \(-0.432708\pi\)
0.209834 + 0.977737i \(0.432708\pi\)
\(264\) −5.70230 −0.350952
\(265\) −7.16338 + 12.4073i −0.440043 + 0.762177i
\(266\) 8.57195 + 14.8470i 0.525580 + 0.910331i
\(267\) −2.80283 + 4.85464i −0.171530 + 0.297099i
\(268\) −8.02341 13.8970i −0.490108 0.848892i
\(269\) 5.25982 + 9.11028i 0.320697 + 0.555464i 0.980632 0.195859i \(-0.0627495\pi\)
−0.659935 + 0.751323i \(0.729416\pi\)
\(270\) 3.41159 + 5.90905i 0.207623 + 0.359613i
\(271\) 1.57714 0.0958044 0.0479022 0.998852i \(-0.484746\pi\)
0.0479022 + 0.998852i \(0.484746\pi\)
\(272\) −0.884903 + 1.53270i −0.0536551 + 0.0929334i
\(273\) −3.86128 + 6.68794i −0.233695 + 0.404772i
\(274\) −19.0103 32.9268i −1.14845 1.98918i
\(275\) −0.911421 −0.0549608
\(276\) −30.0888 + 52.1154i −1.81113 + 3.13698i
\(277\) −12.1014 −0.727100 −0.363550 0.931575i \(-0.618435\pi\)
−0.363550 + 0.931575i \(0.618435\pi\)
\(278\) −16.9368 −1.01580
\(279\) 0 0
\(280\) −12.2337 −0.731106
\(281\) −21.4727 −1.28096 −0.640478 0.767976i \(-0.721264\pi\)
−0.640478 + 0.767976i \(0.721264\pi\)
\(282\) 23.5768 40.8362i 1.40398 2.43176i
\(283\) −0.688807 −0.0409453 −0.0204726 0.999790i \(-0.506517\pi\)
−0.0204726 + 0.999790i \(0.506517\pi\)
\(284\) 5.66030 + 9.80392i 0.335877 + 0.581756i
\(285\) −14.7324 + 25.5173i −0.872675 + 1.51152i
\(286\) 1.60488 2.77973i 0.0948985 0.164369i
\(287\) −11.8122 −0.697253
\(288\) 8.97709 + 15.5488i 0.528980 + 0.916220i
\(289\) −1.08887 1.88598i −0.0640512 0.110940i
\(290\) 0.371684 + 0.643775i 0.0218260 + 0.0378038i
\(291\) −15.6249 + 27.0631i −0.915946 + 1.58647i
\(292\) 4.47509 + 7.75109i 0.261885 + 0.453598i
\(293\) −4.50594 + 7.80452i −0.263240 + 0.455945i −0.967101 0.254393i \(-0.918124\pi\)
0.703861 + 0.710338i \(0.251458\pi\)
\(294\) −26.0160 −1.51728
\(295\) −23.7447 −1.38247
\(296\) 12.8833 22.3146i 0.748828 1.29701i
\(297\) 0.434141 + 0.751954i 0.0251914 + 0.0436328i
\(298\) 7.34016 12.7135i 0.425204 0.736475i
\(299\) −6.74822 11.6883i −0.390259 0.675949i
\(300\) −5.25104 9.09507i −0.303169 0.525104i
\(301\) 0.184610 + 0.319754i 0.0106407 + 0.0184303i
\(302\) 12.7485 0.733592
\(303\) −9.33729 + 16.1727i −0.536413 + 0.929095i
\(304\) 0.937195 1.62327i 0.0537518 0.0931009i
\(305\) 9.79451 + 16.9646i 0.560832 + 0.971389i
\(306\) 35.0191 2.00191
\(307\) 15.6663 27.1349i 0.894124 1.54867i 0.0592398 0.998244i \(-0.481132\pi\)
0.834885 0.550425i \(-0.185534\pi\)
\(308\) −3.90726 −0.222637
\(309\) 14.2107 0.808416
\(310\) 0 0
\(311\) −17.7139 −1.00447 −0.502233 0.864732i \(-0.667488\pi\)
−0.502233 + 0.864732i \(0.667488\pi\)
\(312\) 14.7363 0.834281
\(313\) −10.8344 + 18.7656i −0.612394 + 1.06070i 0.378442 + 0.925625i \(0.376460\pi\)
−0.990836 + 0.135072i \(0.956873\pi\)
\(314\) 18.4475 1.04105
\(315\) 6.93475 + 12.0113i 0.390729 + 0.676762i
\(316\) 7.52698 13.0371i 0.423426 0.733395i
\(317\) −0.508023 + 0.879922i −0.0285334 + 0.0494213i −0.879940 0.475086i \(-0.842417\pi\)
0.851406 + 0.524507i \(0.175750\pi\)
\(318\) −33.6451 −1.88672
\(319\) 0.0472985 + 0.0819234i 0.00264821 + 0.00458683i
\(320\) −15.9444 27.6165i −0.891318 1.54381i
\(321\) −2.31917 4.01692i −0.129443 0.224202i
\(322\) −13.1563 + 22.7873i −0.733170 + 1.26989i
\(323\) 10.1555 + 17.5899i 0.565068 + 0.978726i
\(324\) 12.2797 21.2691i 0.682208 1.18162i
\(325\) 2.35537 0.130652
\(326\) −39.3789 −2.18099
\(327\) −14.9579 + 25.9079i −0.827176 + 1.43271i
\(328\) 11.2701 + 19.5205i 0.622290 + 1.07784i
\(329\) 6.43677 11.1488i 0.354870 0.614654i
\(330\) −5.37751 9.31412i −0.296022 0.512725i
\(331\) 13.3447 + 23.1137i 0.733492 + 1.27045i 0.955382 + 0.295374i \(0.0954443\pi\)
−0.221889 + 0.975072i \(0.571222\pi\)
\(332\) 4.43903 + 7.68862i 0.243623 + 0.421968i
\(333\) −29.2119 −1.60080
\(334\) −28.1198 + 48.7049i −1.53864 + 2.66501i
\(335\) 6.02951 10.4434i 0.329427 0.570584i
\(336\) −0.823049 1.42556i −0.0449010 0.0777708i
\(337\) −31.9415 −1.73997 −0.869983 0.493081i \(-0.835871\pi\)
−0.869983 + 0.493081i \(0.835871\pi\)
\(338\) 10.8515 18.7953i 0.590242 1.02233i
\(339\) 28.1086 1.52665
\(340\) −36.3765 −1.97279
\(341\) 0 0
\(342\) −37.0885 −2.00552
\(343\) −18.3159 −0.988963
\(344\) 0.352276 0.610160i 0.0189934 0.0328976i
\(345\) −45.2228 −2.43472
\(346\) −10.3534 17.9326i −0.556603 0.964065i
\(347\) 1.56066 2.70314i 0.0837804 0.145112i −0.821090 0.570798i \(-0.806634\pi\)
0.904871 + 0.425686i \(0.139967\pi\)
\(348\) −0.545009 + 0.943982i −0.0292155 + 0.0506028i
\(349\) −22.0265 −1.17905 −0.589525 0.807750i \(-0.700685\pi\)
−0.589525 + 0.807750i \(0.700685\pi\)
\(350\) −2.29600 3.97679i −0.122727 0.212569i
\(351\) −1.12194 1.94326i −0.0598849 0.103724i
\(352\) −1.90051 3.29177i −0.101297 0.175452i
\(353\) 2.46620 4.27158i 0.131262 0.227353i −0.792901 0.609350i \(-0.791430\pi\)
0.924163 + 0.381997i \(0.124764\pi\)
\(354\) −27.8811 48.2914i −1.48186 2.56666i
\(355\) −4.25365 + 7.36754i −0.225760 + 0.391028i
\(356\) 7.32954 0.388465
\(357\) 17.8372 0.944046
\(358\) −13.0266 + 22.5627i −0.688476 + 1.19248i
\(359\) 0.180430 + 0.312514i 0.00952273 + 0.0164938i 0.870747 0.491730i \(-0.163635\pi\)
−0.861225 + 0.508224i \(0.830302\pi\)
\(360\) 13.2330 22.9203i 0.697441 1.20800i
\(361\) −1.25564 2.17484i −0.0660865 0.114465i
\(362\) −17.2384 29.8578i −0.906032 1.56929i
\(363\) 13.3007 + 23.0374i 0.698104 + 1.20915i
\(364\) 10.0975 0.529251
\(365\) −3.36298 + 5.82486i −0.176027 + 0.304887i
\(366\) −23.0015 + 39.8398i −1.20231 + 2.08246i
\(367\) −14.6935 25.4498i −0.766992 1.32847i −0.939187 0.343406i \(-0.888419\pi\)
0.172195 0.985063i \(-0.444914\pi\)
\(368\) 2.87682 0.149965
\(369\) 12.7771 22.1305i 0.665147 1.15207i
\(370\) 48.5981 2.52650
\(371\) −9.18555 −0.476890
\(372\) 0 0
\(373\) 17.7284 0.917941 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(374\) −7.41376 −0.383356
\(375\) −11.9361 + 20.6740i −0.616379 + 1.06760i
\(376\) −24.5655 −1.26687
\(377\) −0.122233 0.211713i −0.00629530 0.0109038i
\(378\) −2.18733 + 3.78857i −0.112504 + 0.194863i
\(379\) 1.23021 2.13079i 0.0631917 0.109451i −0.832699 0.553726i \(-0.813205\pi\)
0.895890 + 0.444275i \(0.146539\pi\)
\(380\) 38.5261 1.97635
\(381\) −1.63628 2.83413i −0.0838294 0.145197i
\(382\) −2.60858 4.51819i −0.133466 0.231171i
\(383\) −9.55896 16.5566i −0.488440 0.846003i 0.511472 0.859300i \(-0.329101\pi\)
−0.999912 + 0.0132974i \(0.995767\pi\)
\(384\) 24.2703 42.0374i 1.23854 2.14521i
\(385\) −1.46813 2.54288i −0.0748229 0.129597i
\(386\) −29.6105 + 51.2868i −1.50713 + 2.61043i
\(387\) −0.798756 −0.0406031
\(388\) 40.8599 2.07435
\(389\) 2.63553 4.56487i 0.133627 0.231448i −0.791445 0.611240i \(-0.790671\pi\)
0.925072 + 0.379792i \(0.124004\pi\)
\(390\) 13.8970 + 24.0703i 0.703702 + 1.21885i
\(391\) −15.5867 + 26.9970i −0.788255 + 1.36530i
\(392\) 6.77676 + 11.7377i 0.342278 + 0.592843i
\(393\) 10.1968 + 17.6613i 0.514359 + 0.890896i
\(394\) −7.14838 12.3814i −0.360130 0.623764i
\(395\) 11.3129 0.569213
\(396\) 4.22641 7.32036i 0.212385 0.367862i
\(397\) −8.46275 + 14.6579i −0.424733 + 0.735660i −0.996395 0.0848295i \(-0.972965\pi\)
0.571662 + 0.820489i \(0.306299\pi\)
\(398\) −5.27193 9.13124i −0.264258 0.457708i
\(399\) −18.8913 −0.945748
\(400\) −0.251029 + 0.434794i −0.0125514 + 0.0217397i
\(401\) −38.0397 −1.89961 −0.949805 0.312843i \(-0.898719\pi\)
−0.949805 + 0.312843i \(0.898719\pi\)
\(402\) 28.3195 1.41245
\(403\) 0 0
\(404\) 24.4175 1.21482
\(405\) 18.4562 0.917095
\(406\) −0.238304 + 0.412754i −0.0118268 + 0.0204846i
\(407\) 6.18434 0.306546
\(408\) −17.0187 29.4772i −0.842550 1.45934i
\(409\) 0.249342 0.431873i 0.0123292 0.0213547i −0.859795 0.510639i \(-0.829409\pi\)
0.872124 + 0.489285i \(0.162742\pi\)
\(410\) −21.2565 + 36.8173i −1.04978 + 1.81828i
\(411\) 41.8958 2.06657
\(412\) −9.29040 16.0915i −0.457705 0.792769i
\(413\) −7.61190 13.1842i −0.374557 0.648752i
\(414\) −28.4618 49.2972i −1.39882 2.42283i
\(415\) −3.33588 + 5.77791i −0.163752 + 0.283627i
\(416\) 4.91144 + 8.50687i 0.240803 + 0.417084i
\(417\) 9.33157 16.1627i 0.456969 0.791493i
\(418\) 7.85186 0.384047
\(419\) 13.5100 0.660007 0.330003 0.943980i \(-0.392950\pi\)
0.330003 + 0.943980i \(0.392950\pi\)
\(420\) 16.9169 29.3009i 0.825460 1.42974i
\(421\) 15.4576 + 26.7733i 0.753355 + 1.30485i 0.946188 + 0.323618i \(0.104899\pi\)
−0.192833 + 0.981232i \(0.561767\pi\)
\(422\) 21.4793 37.2033i 1.04560 1.81103i
\(423\) 13.9251 + 24.1189i 0.677060 + 1.17270i
\(424\) 8.76402 + 15.1797i 0.425618 + 0.737193i
\(425\) −2.72016 4.71146i −0.131947 0.228539i
\(426\) −19.9786 −0.967967
\(427\) −6.27971 + 10.8768i −0.303897 + 0.526364i
\(428\) −3.03237 + 5.25223i −0.146575 + 0.253876i
\(429\) 1.76846 + 3.06306i 0.0853820 + 0.147886i
\(430\) 1.32885 0.0640826
\(431\) 6.02740 10.4398i 0.290330 0.502865i −0.683558 0.729896i \(-0.739568\pi\)
0.973888 + 0.227031i \(0.0729018\pi\)
\(432\) 0.478294 0.0230119
\(433\) 32.3919 1.55665 0.778327 0.627860i \(-0.216069\pi\)
0.778327 + 0.627860i \(0.216069\pi\)
\(434\) 0 0
\(435\) −0.819136 −0.0392745
\(436\) 39.1158 1.87331
\(437\) 16.5078 28.5924i 0.789675 1.36776i
\(438\) −15.7953 −0.754730
\(439\) −6.18408 10.7111i −0.295150 0.511215i 0.679870 0.733333i \(-0.262036\pi\)
−0.975020 + 0.222118i \(0.928703\pi\)
\(440\) −2.80151 + 4.85236i −0.133557 + 0.231327i
\(441\) 7.68287 13.3071i 0.365851 0.633672i
\(442\) 19.1592 0.911312
\(443\) 2.36170 + 4.09059i 0.112208 + 0.194350i 0.916660 0.399667i \(-0.130874\pi\)
−0.804452 + 0.594017i \(0.797541\pi\)
\(444\) 35.6303 + 61.7135i 1.69094 + 2.92879i
\(445\) 2.75404 + 4.77013i 0.130554 + 0.226126i
\(446\) 7.17059 12.4198i 0.339537 0.588095i
\(447\) 8.08831 + 14.0094i 0.382564 + 0.662620i
\(448\) 10.2227 17.7062i 0.482976 0.836540i
\(449\) 15.9842 0.754341 0.377170 0.926144i \(-0.376897\pi\)
0.377170 + 0.926144i \(0.376897\pi\)
\(450\) 9.93418 0.468302
\(451\) −2.70498 + 4.68517i −0.127373 + 0.220616i
\(452\) −18.3764 31.8288i −0.864353 1.49710i
\(453\) −7.02394 + 12.1658i −0.330013 + 0.571600i
\(454\) 15.0541 + 26.0744i 0.706523 + 1.22373i
\(455\) 3.79406 + 6.57151i 0.177868 + 0.308077i
\(456\) 18.0244 + 31.2191i 0.844068 + 1.46197i
\(457\) −4.55775 −0.213203 −0.106601 0.994302i \(-0.533997\pi\)
−0.106601 + 0.994302i \(0.533997\pi\)
\(458\) 17.6271 30.5311i 0.823661 1.42662i
\(459\) −2.59141 + 4.48846i −0.120957 + 0.209503i
\(460\) 29.5650 + 51.2081i 1.37848 + 2.38759i
\(461\) 16.9910 0.791349 0.395675 0.918391i \(-0.370511\pi\)
0.395675 + 0.918391i \(0.370511\pi\)
\(462\) 3.44777 5.97171i 0.160405 0.277829i
\(463\) −27.4279 −1.27468 −0.637340 0.770582i \(-0.719965\pi\)
−0.637340 + 0.770582i \(0.719965\pi\)
\(464\) 0.0521088 0.00241909
\(465\) 0 0
\(466\) 30.1392 1.39617
\(467\) −22.9105 −1.06017 −0.530086 0.847944i \(-0.677840\pi\)
−0.530086 + 0.847944i \(0.677840\pi\)
\(468\) −10.9222 + 18.9179i −0.504881 + 0.874479i
\(469\) 7.73159 0.357012
\(470\) −23.1663 40.1253i −1.06858 1.85084i
\(471\) −10.1639 + 17.6043i −0.468327 + 0.811165i
\(472\) −14.5252 + 25.1583i −0.668575 + 1.15801i
\(473\) 0.169102 0.00777531
\(474\) 13.2836 + 23.0079i 0.610138 + 1.05679i
\(475\) 2.88091 + 4.98988i 0.132185 + 0.228951i
\(476\) −11.6613 20.1980i −0.534496 0.925775i
\(477\) 9.93585 17.2094i 0.454931 0.787964i
\(478\) −27.0468 46.8464i −1.23709 2.14270i
\(479\) −4.52353 + 7.83498i −0.206685 + 0.357989i −0.950668 0.310209i \(-0.899601\pi\)
0.743983 + 0.668198i \(0.232934\pi\)
\(480\) 32.9138 1.50230
\(481\) −15.9821 −0.728720
\(482\) 28.5119 49.3841i 1.29868 2.24938i
\(483\) −14.4972 25.1099i −0.659647 1.14254i
\(484\) 17.3910 30.1221i 0.790499 1.36918i
\(485\) 15.3529 + 26.5919i 0.697138 + 1.20748i
\(486\) 25.7678 + 44.6311i 1.16885 + 2.02451i
\(487\) −11.8113 20.4578i −0.535223 0.927033i −0.999153 0.0411607i \(-0.986894\pi\)
0.463930 0.885872i \(-0.346439\pi\)
\(488\) 23.9661 1.08490
\(489\) 21.6963 37.5791i 0.981141 1.69939i
\(490\) −12.7815 + 22.1383i −0.577411 + 1.00011i
\(491\) 4.61346 + 7.99074i 0.208202 + 0.360617i 0.951148 0.308734i \(-0.0999054\pi\)
−0.742946 + 0.669351i \(0.766572\pi\)
\(492\) −62.3377 −2.81040
\(493\) −0.282327 + 0.489005i −0.0127154 + 0.0220237i
\(494\) −20.2914 −0.912955
\(495\) 6.35220 0.285510
\(496\) 0 0
\(497\) −5.45442 −0.244664
\(498\) −15.6680 −0.702101
\(499\) 14.2070 24.6072i 0.635992 1.10157i −0.350313 0.936633i \(-0.613925\pi\)
0.986304 0.164937i \(-0.0527420\pi\)
\(500\) 31.2136 1.39592
\(501\) −30.9859 53.6692i −1.38435 2.39776i
\(502\) −26.7606 + 46.3506i −1.19438 + 2.06873i
\(503\) −9.13903 + 15.8293i −0.407489 + 0.705792i −0.994608 0.103709i \(-0.966929\pi\)
0.587118 + 0.809501i \(0.300262\pi\)
\(504\) 16.9686 0.755842
\(505\) 9.17474 + 15.8911i 0.408271 + 0.707146i
\(506\) 6.02554 + 10.4365i 0.267868 + 0.463961i
\(507\) 11.9575 + 20.7110i 0.531052 + 0.919809i
\(508\) −2.13949 + 3.70570i −0.0949243 + 0.164414i
\(509\) 5.19318 + 8.99485i 0.230184 + 0.398690i 0.957862 0.287229i \(-0.0927340\pi\)
−0.727678 + 0.685918i \(0.759401\pi\)
\(510\) 32.0987 55.5965i 1.42135 2.46186i
\(511\) −4.31233 −0.190766
\(512\) −4.56446 −0.201722
\(513\) 2.74455 4.75370i 0.121175 0.209881i
\(514\) −17.7058 30.6673i −0.780968 1.35268i
\(515\) 6.98163 12.0925i 0.307648 0.532861i
\(516\) 0.974259 + 1.68747i 0.0428894 + 0.0742865i
\(517\) −2.94802 5.10613i −0.129654 0.224567i
\(518\) 15.5793 + 26.9841i 0.684514 + 1.18561i
\(519\) 22.8174 1.00157
\(520\) 7.23990 12.5399i 0.317491 0.549910i
\(521\) −4.62522 + 8.01111i −0.202635 + 0.350973i −0.949376 0.314141i \(-0.898284\pi\)
0.746742 + 0.665114i \(0.231617\pi\)
\(522\) −0.515537 0.892937i −0.0225645 0.0390828i
\(523\) 6.57516 0.287512 0.143756 0.989613i \(-0.454082\pi\)
0.143756 + 0.989613i \(0.454082\pi\)
\(524\) 13.3326 23.0927i 0.582435 1.00881i
\(525\) 5.06005 0.220839
\(526\) 15.7047 0.684759
\(527\) 0 0
\(528\) −0.753909 −0.0328097
\(529\) 27.6725 1.20315
\(530\) −16.5297 + 28.6303i −0.718004 + 1.24362i
\(531\) 32.9346 1.42924
\(532\) 12.3504 + 21.3916i 0.535460 + 0.927443i
\(533\) 6.99044 12.1078i 0.302790 0.524447i
\(534\) −6.46760 + 11.2022i −0.279880 + 0.484767i
\(535\) −4.55759 −0.197042
\(536\) −7.37678 12.7770i −0.318628 0.551881i
\(537\) −14.3543 24.8624i −0.619435 1.07289i
\(538\) 12.1372 + 21.0222i 0.523271 + 0.906332i
\(539\) −1.62651 + 2.81720i −0.0700588 + 0.121345i
\(540\) 4.91541 + 8.51375i 0.211526 + 0.366373i
\(541\) 1.10164 1.90809i 0.0473631 0.0820353i −0.841372 0.540457i \(-0.818252\pi\)
0.888735 + 0.458421i \(0.151585\pi\)
\(542\) 3.63929 0.156321
\(543\) 37.9909 1.63035
\(544\) 11.3442 19.6488i 0.486380 0.842435i
\(545\) 14.6975 + 25.4569i 0.629574 + 1.09045i
\(546\) −8.91001 + 15.4326i −0.381313 + 0.660454i
\(547\) 2.43172 + 4.21187i 0.103973 + 0.180086i 0.913318 0.407247i \(-0.133511\pi\)
−0.809345 + 0.587333i \(0.800178\pi\)
\(548\) −27.3900 47.4408i −1.17004 2.02657i
\(549\) −13.5853 23.5304i −0.579807 1.00425i
\(550\) −2.10313 −0.0896777
\(551\) 0.299011 0.517903i 0.0127383 0.0220634i
\(552\) −27.6639 + 47.9152i −1.17745 + 2.03941i
\(553\) 3.62661 + 6.28147i 0.154219 + 0.267115i
\(554\) −27.9242 −1.18639
\(555\) −26.7758 + 46.3770i −1.13657 + 1.96859i
\(556\) −24.4025 −1.03490
\(557\) −11.0363 −0.467623 −0.233811 0.972282i \(-0.575120\pi\)
−0.233811 + 0.972282i \(0.575120\pi\)
\(558\) 0 0
\(559\) −0.437007 −0.0184834
\(560\) −1.61744 −0.0683494
\(561\) 4.08471 7.07492i 0.172456 0.298703i
\(562\) −49.5489 −2.09010
\(563\) 5.59621 + 9.69292i 0.235852 + 0.408508i 0.959520 0.281641i \(-0.0908786\pi\)
−0.723668 + 0.690148i \(0.757545\pi\)
\(564\) 33.9694 58.8366i 1.43037 2.47747i
\(565\) 13.8097 23.9190i 0.580976 1.00628i
\(566\) −1.58944 −0.0668091
\(567\) 5.91656 + 10.2478i 0.248472 + 0.430366i
\(568\) 5.20411 + 9.01379i 0.218360 + 0.378210i
\(569\) −23.4610 40.6356i −0.983536 1.70353i −0.648270 0.761411i \(-0.724507\pi\)
−0.335266 0.942123i \(-0.608826\pi\)
\(570\) −33.9955 + 58.8819i −1.42391 + 2.46629i
\(571\) −10.2298 17.7186i −0.428105 0.741500i 0.568600 0.822614i \(-0.307485\pi\)
−0.996705 + 0.0811145i \(0.974152\pi\)
\(572\) 2.31231 4.00503i 0.0966824 0.167459i
\(573\) 5.74892 0.240164
\(574\) −27.2570 −1.13769
\(575\) −4.42163 + 7.65849i −0.184395 + 0.319381i
\(576\) 22.1154 + 38.3050i 0.921474 + 1.59604i
\(577\) −1.82417 + 3.15956i −0.0759413 + 0.131534i −0.901495 0.432789i \(-0.857530\pi\)
0.825554 + 0.564323i \(0.190863\pi\)
\(578\) −2.51260 4.35195i −0.104510 0.181017i
\(579\) −32.6286 56.5143i −1.35600 2.34865i
\(580\) 0.535521 + 0.927549i 0.0222363 + 0.0385144i
\(581\) −4.27758 −0.177464
\(582\) −36.0548 + 62.4488i −1.49452 + 2.58858i
\(583\) −2.10348 + 3.64334i −0.0871173 + 0.150892i
\(584\) 4.11443 + 7.12641i 0.170256 + 0.294893i
\(585\) −16.4159 −0.678713
\(586\) −10.3976 + 18.0091i −0.429520 + 0.743950i
\(587\) 22.8726 0.944053 0.472027 0.881584i \(-0.343523\pi\)
0.472027 + 0.881584i \(0.343523\pi\)
\(588\) −37.4838 −1.54580
\(589\) 0 0
\(590\) −54.7914 −2.25573
\(591\) 15.7540 0.648032
\(592\) 1.70332 2.95024i 0.0700062 0.121254i
\(593\) −19.4598 −0.799117 −0.399558 0.916708i \(-0.630837\pi\)
−0.399558 + 0.916708i \(0.630837\pi\)
\(594\) 1.00179 + 1.73515i 0.0411040 + 0.0711943i
\(595\) 8.76336 15.1786i 0.359263 0.622261i
\(596\) 10.5757 18.3176i 0.433197 0.750319i
\(597\) 11.6185 0.475515
\(598\) −15.5717 26.9710i −0.636774 1.10292i
\(599\) −17.5859 30.4597i −0.718541 1.24455i −0.961578 0.274533i \(-0.911477\pi\)
0.243036 0.970017i \(-0.421857\pi\)
\(600\) −4.82784 8.36207i −0.197096 0.341380i
\(601\) 2.94403 5.09921i 0.120089 0.208001i −0.799713 0.600382i \(-0.795015\pi\)
0.919803 + 0.392381i \(0.128349\pi\)
\(602\) 0.425992 + 0.737840i 0.0173621 + 0.0300721i
\(603\) −8.36312 + 14.4854i −0.340573 + 0.589889i
\(604\) 18.3680 0.747382
\(605\) 26.1383 1.06267
\(606\) −21.5460 + 37.3188i −0.875248 + 1.51597i
\(607\) −19.4424 33.6753i −0.789143 1.36684i −0.926492 0.376314i \(-0.877191\pi\)
0.137349 0.990523i \(-0.456142\pi\)
\(608\) −12.0146 + 20.8099i −0.487257 + 0.843953i
\(609\) −0.262593 0.454824i −0.0106408 0.0184304i
\(610\) 22.6011 + 39.1462i 0.915091 + 1.58498i
\(611\) 7.61853 + 13.1957i 0.308213 + 0.533840i
\(612\) 50.4554 2.03954
\(613\) −22.8012 + 39.4928i −0.920931 + 1.59510i −0.122954 + 0.992412i \(0.539237\pi\)
−0.797977 + 0.602688i \(0.794096\pi\)
\(614\) 36.1505 62.6144i 1.45891 2.52691i
\(615\) −23.4231 40.5699i −0.944509 1.63594i
\(616\) −3.59236 −0.144740
\(617\) 3.31324 5.73870i 0.133386 0.231031i −0.791594 0.611048i \(-0.790748\pi\)
0.924980 + 0.380016i \(0.124082\pi\)
\(618\) 32.7915 1.31907
\(619\) −41.5360 −1.66947 −0.834736 0.550650i \(-0.814380\pi\)
−0.834736 + 0.550650i \(0.814380\pi\)
\(620\) 0 0
\(621\) 8.42469 0.338071
\(622\) −40.8754 −1.63895
\(623\) −1.76574 + 3.05835i −0.0707429 + 0.122530i
\(624\) 1.94831 0.0779950
\(625\) 14.8341 + 25.6934i 0.593364 + 1.02774i
\(626\) −25.0006 + 43.3022i −0.999223 + 1.73071i
\(627\) −4.32609 + 7.49300i −0.172767 + 0.299242i
\(628\) 26.5791 1.06062
\(629\) 18.4574 + 31.9691i 0.735943 + 1.27469i
\(630\) 16.0021 + 27.7165i 0.637540 + 1.10425i
\(631\) 5.57236 + 9.65160i 0.221832 + 0.384224i 0.955364 0.295430i \(-0.0954630\pi\)
−0.733532 + 0.679655i \(0.762130\pi\)
\(632\) 6.92036 11.9864i 0.275277 0.476794i
\(633\) 23.6687 + 40.9953i 0.940745 + 1.62942i
\(634\) −1.17228 + 2.03044i −0.0465571 + 0.0806392i
\(635\) −3.21560 −0.127607
\(636\) −48.4758 −1.92219
\(637\) 4.20336 7.28044i 0.166543 0.288462i
\(638\) 0.109143 + 0.189040i 0.00432099 + 0.00748418i
\(639\) 5.89995 10.2190i 0.233398 0.404258i
\(640\) −23.8478 41.3056i −0.942666 1.63275i
\(641\) 8.77665 + 15.2016i 0.346657 + 0.600427i 0.985653 0.168782i \(-0.0539835\pi\)
−0.638996 + 0.769210i \(0.720650\pi\)
\(642\) −5.35154 9.26914i −0.211209 0.365824i
\(643\) 2.19605 0.0866038 0.0433019 0.999062i \(-0.486212\pi\)
0.0433019 + 0.999062i \(0.486212\pi\)
\(644\) −18.9555 + 32.8319i −0.746952 + 1.29376i
\(645\) −0.732145 + 1.26811i −0.0288282 + 0.0499318i
\(646\) 23.4341 + 40.5891i 0.922003 + 1.59696i
\(647\) 32.4446 1.27553 0.637764 0.770232i \(-0.279860\pi\)
0.637764 + 0.770232i \(0.279860\pi\)
\(648\) 11.2901 19.5550i 0.443516 0.768193i
\(649\) −6.97247 −0.273693
\(650\) 5.43508 0.213181
\(651\) 0 0
\(652\) −56.7370 −2.22199
\(653\) 16.4900 0.645302 0.322651 0.946518i \(-0.395426\pi\)
0.322651 + 0.946518i \(0.395426\pi\)
\(654\) −34.5158 + 59.7832i −1.34968 + 2.33771i
\(655\) 20.0385 0.782970
\(656\) 1.49004 + 2.58083i 0.0581764 + 0.100764i
\(657\) 4.66457 8.07927i 0.181982 0.315202i
\(658\) 14.8530 25.7262i 0.579031 1.00291i
\(659\) −19.7414 −0.769015 −0.384508 0.923122i \(-0.625629\pi\)
−0.384508 + 0.923122i \(0.625629\pi\)
\(660\) −7.74790 13.4198i −0.301587 0.522364i
\(661\) −5.89041 10.2025i −0.229110 0.396831i 0.728434 0.685116i \(-0.240248\pi\)
−0.957545 + 0.288285i \(0.906915\pi\)
\(662\) 30.7933 + 53.3356i 1.19682 + 2.07295i
\(663\) −10.5560 + 18.2836i −0.409962 + 0.710076i
\(664\) 4.08127 + 7.06897i 0.158384 + 0.274329i
\(665\) −9.28122 + 16.0755i −0.359910 + 0.623383i
\(666\) −67.4072 −2.61198
\(667\) 0.917847 0.0355392
\(668\) −40.5149 + 70.1739i −1.56757 + 2.71511i
\(669\) 7.90146 + 13.6857i 0.305488 + 0.529121i
\(670\) 13.9132 24.0984i 0.537516 0.931004i
\(671\) 2.87609 + 4.98154i 0.111030 + 0.192310i
\(672\) 10.5513 + 18.2754i 0.407024 + 0.704987i
\(673\) 25.1911 + 43.6322i 0.971044 + 1.68190i 0.692416 + 0.721498i \(0.256546\pi\)
0.278628 + 0.960399i \(0.410120\pi\)
\(674\) −73.7060 −2.83905
\(675\) −0.735130 + 1.27328i −0.0282952 + 0.0490087i
\(676\) 15.6348 27.0802i 0.601337 1.04155i
\(677\) −1.98998 3.44674i −0.0764810 0.132469i 0.825248 0.564770i \(-0.191035\pi\)
−0.901729 + 0.432301i \(0.857702\pi\)
\(678\) 64.8614 2.49099
\(679\) −9.84344 + 17.0493i −0.377756 + 0.654293i
\(680\) −33.4448 −1.28255
\(681\) −33.1770 −1.27134
\(682\) 0 0
\(683\) 5.23244 0.200214 0.100107 0.994977i \(-0.468082\pi\)
0.100107 + 0.994977i \(0.468082\pi\)
\(684\) −53.4370 −2.04321
\(685\) 20.5833 35.6512i 0.786446 1.36216i
\(686\) −42.2643 −1.61366
\(687\) 19.4238 + 33.6430i 0.741064 + 1.28356i
\(688\) 0.0465749 0.0806701i 0.00177565 0.00307552i
\(689\) 5.43599 9.41541i 0.207095 0.358699i
\(690\) −104.353 −3.97265
\(691\) −4.59777 7.96356i −0.174907 0.302948i 0.765222 0.643767i \(-0.222629\pi\)
−0.940129 + 0.340818i \(0.889296\pi\)
\(692\) −14.9172 25.8373i −0.567066 0.982187i
\(693\) 2.03635 + 3.52705i 0.0773544 + 0.133982i
\(694\) 3.60125 6.23756i 0.136702 0.236774i
\(695\) −9.16912 15.8814i −0.347805 0.602415i
\(696\) −0.501085 + 0.867904i −0.0189936 + 0.0328978i
\(697\) −32.2924 −1.22316
\(698\) −50.8266 −1.92382
\(699\) −16.6056 + 28.7617i −0.628081 + 1.08787i
\(700\) −3.30808 5.72976i −0.125034 0.216564i
\(701\) 20.2772 35.1211i 0.765858 1.32650i −0.173935 0.984757i \(-0.555648\pi\)
0.939792 0.341747i \(-0.111019\pi\)
\(702\) −2.58891 4.48413i −0.0977122 0.169243i
\(703\) −19.5481 33.8582i −0.737269 1.27699i
\(704\) −4.68197 8.10940i −0.176458 0.305635i
\(705\) 51.0552 1.92285
\(706\) 5.69081 9.85678i 0.214177 0.370965i
\(707\) −5.88235 + 10.1885i −0.221229 + 0.383179i
\(708\) −40.1710 69.5782i −1.50972 2.61491i
\(709\) 37.2861 1.40031 0.700154 0.713992i \(-0.253115\pi\)
0.700154 + 0.713992i \(0.253115\pi\)
\(710\) −9.81541 + 17.0008i −0.368366 + 0.638028i
\(711\) −15.6913 −0.588471
\(712\) 6.73883 0.252548
\(713\) 0 0
\(714\) 41.1599 1.54037
\(715\) 3.47535 0.129971
\(716\) −18.7687 + 32.5083i −0.701418 + 1.21489i
\(717\) 59.6071 2.22607
\(718\) 0.416347 + 0.721134i 0.0155379 + 0.0269125i
\(719\) −9.28994 + 16.0906i −0.346456 + 0.600080i −0.985617 0.168993i \(-0.945948\pi\)
0.639161 + 0.769073i \(0.279282\pi\)
\(720\) 1.74956 3.03032i 0.0652022 0.112933i
\(721\) 8.95250 0.333409
\(722\) −2.89743 5.01850i −0.107831 0.186769i
\(723\) 31.4180 + 54.4176i 1.16845 + 2.02381i
\(724\) −24.8371 43.0191i −0.923063 1.59879i
\(725\) −0.0800904 + 0.138721i −0.00297448 + 0.00515196i
\(726\) 30.6916 + 53.1595i 1.13907 + 1.97293i
\(727\) −8.18859 + 14.1830i −0.303698 + 0.526020i −0.976971 0.213374i \(-0.931555\pi\)
0.673273 + 0.739394i \(0.264888\pi\)
\(728\) 9.28367 0.344076
\(729\) −34.6273 −1.28249
\(730\) −7.76017 + 13.4410i −0.287217 + 0.497474i
\(731\) 0.504689 + 0.874147i 0.0186666 + 0.0323315i
\(732\) −33.1405 + 57.4011i −1.22491 + 2.12160i
\(733\) 0.575669 + 0.997088i 0.0212628 + 0.0368283i 0.876461 0.481473i \(-0.159898\pi\)
−0.855198 + 0.518301i \(0.826565\pi\)
\(734\) −33.9055 58.7261i −1.25148 2.16762i
\(735\) −14.0843 24.3948i −0.519508 0.899814i
\(736\) −36.8801 −1.35942
\(737\) 1.77053 3.06664i 0.0652182 0.112961i
\(738\) 29.4834 51.0668i 1.08530 1.87979i
\(739\) −10.3579 17.9404i −0.381022 0.659949i 0.610187 0.792257i \(-0.291094\pi\)
−0.991209 + 0.132309i \(0.957761\pi\)
\(740\) 70.0201 2.57399
\(741\) 11.1798 19.3640i 0.410701 0.711356i
\(742\) −21.1959 −0.778126
\(743\) 35.2367 1.29271 0.646354 0.763038i \(-0.276293\pi\)
0.646354 + 0.763038i \(0.276293\pi\)
\(744\) 0 0
\(745\) 15.8950 0.582348
\(746\) 40.9087 1.49778
\(747\) 4.62698 8.01416i 0.169292 0.293223i
\(748\) −10.6817 −0.390563
\(749\) −1.46104 2.53060i −0.0533853 0.0924660i
\(750\) −27.5429 + 47.7058i −1.00573 + 1.74197i
\(751\) 21.5729 37.3654i 0.787207 1.36348i −0.140464 0.990086i \(-0.544859\pi\)
0.927671 0.373398i \(-0.121807\pi\)
\(752\) −3.24784 −0.118437
\(753\) −29.4882 51.0750i −1.07461 1.86128i
\(754\) −0.282055 0.488534i −0.0102718 0.0177913i
\(755\) 6.90166 + 11.9540i 0.251177 + 0.435052i
\(756\) −3.15150 + 5.45856i −0.114619 + 0.198526i
\(757\) −13.6693 23.6759i −0.496819 0.860515i 0.503175 0.864185i \(-0.332165\pi\)
−0.999993 + 0.00366955i \(0.998832\pi\)
\(758\) 2.83874 4.91685i 0.103108 0.178588i
\(759\) −13.2794 −0.482011
\(760\) 35.4212 1.28486
\(761\) 8.59598 14.8887i 0.311604 0.539714i −0.667106 0.744963i \(-0.732467\pi\)
0.978710 + 0.205249i \(0.0658004\pi\)
\(762\) −3.77577 6.53983i −0.136782 0.236913i
\(763\) −9.42328 + 16.3216i −0.341146 + 0.590882i
\(764\) −3.75843 6.50979i −0.135975 0.235516i
\(765\) 18.9583 + 32.8368i 0.685440 + 1.18722i
\(766\) −22.0575 38.2048i −0.796972 1.38040i
\(767\) 18.0188 0.650622
\(768\) 23.5506 40.7908i 0.849809 1.47191i
\(769\) −7.02837 + 12.1735i −0.253450 + 0.438987i −0.964473 0.264181i \(-0.914899\pi\)
0.711024 + 0.703168i \(0.248232\pi\)
\(770\) −3.38775 5.86776i −0.122086 0.211459i
\(771\) 39.0209 1.40530
\(772\) −42.6627 + 73.8940i −1.53546 + 2.65950i
\(773\) 22.2368 0.799803 0.399902 0.916558i \(-0.369044\pi\)
0.399902 + 0.916558i \(0.369044\pi\)
\(774\) −1.84315 −0.0662507
\(775\) 0 0
\(776\) 37.5668 1.34857
\(777\) −34.3344 −1.23174
\(778\) 6.08156 10.5336i 0.218034 0.377647i
\(779\) 34.2007 1.22537
\(780\) 20.0228 + 34.6804i 0.716930 + 1.24176i
\(781\) −1.24906 + 2.16343i −0.0446948 + 0.0774136i
\(782\) −35.9668 + 62.2963i −1.28617 + 2.22771i
\(783\) 0.152599 0.00545345
\(784\) 0.895965 + 1.55186i 0.0319988 + 0.0554235i
\(785\) 9.98694 + 17.2979i 0.356449 + 0.617388i
\(786\) 23.5293 + 40.7540i 0.839263 + 1.45365i
\(787\) 16.0169 27.7421i 0.570941 0.988899i −0.425529 0.904945i \(-0.639912\pi\)
0.996470 0.0839540i \(-0.0267549\pi\)
\(788\) −10.2994 17.8390i −0.366900 0.635490i
\(789\) −8.65273 + 14.9870i −0.308045 + 0.533550i
\(790\) 26.1048 0.928767
\(791\) 17.7080 0.629625
\(792\) 3.88579 6.73039i 0.138076 0.239154i
\(793\) −7.43264 12.8737i −0.263941 0.457159i
\(794\) −19.5280 + 33.8235i −0.693024 + 1.20035i
\(795\) −18.2145 31.5484i −0.646002 1.11891i
\(796\) −7.59578 13.1563i −0.269225 0.466312i
\(797\) 13.0246 + 22.5593i 0.461356 + 0.799092i 0.999029 0.0440614i \(-0.0140297\pi\)
−0.537673 + 0.843154i \(0.680696\pi\)
\(798\) −43.5922 −1.54315
\(799\) 17.5969 30.4788i 0.622535 1.07826i
\(800\) 3.21812 5.57395i 0.113778 0.197069i
\(801\) −3.81994 6.61633i −0.134971 0.233776i
\(802\) −87.7775 −3.09953
\(803\) −0.987519 + 1.71043i −0.0348488 + 0.0603599i
\(804\) 40.8027 1.43900
\(805\) −28.4897 −1.00413
\(806\) 0 0
\(807\) −26.7486 −0.941594
\(808\) 22.4496 0.789775
\(809\) −4.36471 + 7.55989i −0.153455 + 0.265792i −0.932495 0.361182i \(-0.882373\pi\)
0.779040 + 0.626974i \(0.215707\pi\)
\(810\) 42.5881 1.49639
\(811\) 25.0392 + 43.3692i 0.879245 + 1.52290i 0.852170 + 0.523264i \(0.175286\pi\)
0.0270750 + 0.999633i \(0.491381\pi\)
\(812\) −0.343347 + 0.594695i −0.0120491 + 0.0208697i
\(813\) −2.00511 + 3.47296i −0.0703225 + 0.121802i
\(814\) 14.2705 0.500182
\(815\) −21.3186 36.9249i −0.746758 1.29342i
\(816\) −2.25006 3.89722i −0.0787680 0.136430i
\(817\) −0.534513 0.925804i −0.0187003 0.0323898i
\(818\) 0.575363 0.996558i 0.0201171 0.0348438i
\(819\) −5.26249 9.11490i −0.183886 0.318500i
\(820\) −30.6263 + 53.0462i −1.06952 + 1.85246i
\(821\) 50.7831 1.77234 0.886171 0.463359i \(-0.153356\pi\)
0.886171 + 0.463359i \(0.153356\pi\)
\(822\) 96.6758 3.37195
\(823\) −3.16460 + 5.48125i −0.110311 + 0.191064i −0.915896 0.401416i \(-0.868518\pi\)
0.805585 + 0.592481i \(0.201851\pi\)
\(824\) −8.54166 14.7946i −0.297563 0.515394i
\(825\) 1.15875 2.00701i 0.0403424 0.0698750i
\(826\) −17.5647 30.4229i −0.611153 1.05855i
\(827\) 1.84873 + 3.20209i 0.0642865 + 0.111347i 0.896377 0.443292i \(-0.146190\pi\)
−0.832091 + 0.554639i \(0.812856\pi\)
\(828\) −41.0077 71.0274i −1.42511 2.46837i
\(829\) −26.0416 −0.904461 −0.452230 0.891901i \(-0.649372\pi\)
−0.452230 + 0.891901i \(0.649372\pi\)
\(830\) −7.69763 + 13.3327i −0.267189 + 0.462784i
\(831\) 15.3852 26.6479i 0.533707 0.924407i
\(832\) 12.0995 + 20.9570i 0.419475 + 0.726553i
\(833\) −19.4175 −0.672776
\(834\) 21.5328 37.2960i 0.745621 1.29145i
\(835\) −60.8930 −2.10729
\(836\) 11.3130 0.391267
\(837\) 0 0
\(838\) 31.1747 1.07691
\(839\) 7.49300 0.258687 0.129343 0.991600i \(-0.458713\pi\)
0.129343 + 0.991600i \(0.458713\pi\)
\(840\) 15.5535 26.9395i 0.536647 0.929501i
\(841\) −28.9834 −0.999427
\(842\) 35.6687 + 61.7800i 1.22923 + 2.12908i
\(843\) 27.2996 47.2843i 0.940249 1.62856i
\(844\) 30.9474 53.6025i 1.06525 1.84507i
\(845\) 23.4987 0.808380
\(846\) 32.1325 + 55.6551i 1.10474 + 1.91346i
\(847\) 8.37922 + 14.5132i 0.287914 + 0.498681i
\(848\) 1.15870 + 2.00693i 0.0397901 + 0.0689184i
\(849\) 0.875722 1.51680i 0.0300547 0.0520563i
\(850\) −6.27685 10.8718i −0.215294 0.372900i
\(851\) 30.0025 51.9658i 1.02847 1.78136i
\(852\) −28.7851 −0.986163
\(853\) −43.5869 −1.49239 −0.746194 0.665728i \(-0.768121\pi\)
−0.746194 + 0.665728i \(0.768121\pi\)
\(854\) −14.4906 + 25.0985i −0.495858 + 0.858852i
\(855\) −20.0787 34.7772i −0.686675 1.18936i
\(856\) −2.78799 + 4.82893i −0.0952914 + 0.165050i
\(857\) −19.6114 33.9679i −0.669912 1.16032i −0.977928 0.208941i \(-0.932998\pi\)
0.308016 0.951381i \(-0.400335\pi\)
\(858\) 4.08077 + 7.06809i 0.139315 + 0.241301i
\(859\) −9.10065 15.7628i −0.310510 0.537819i 0.667963 0.744195i \(-0.267167\pi\)
−0.978473 + 0.206375i \(0.933833\pi\)
\(860\) 1.91460 0.0652872
\(861\) 15.0176 26.0113i 0.511799 0.886461i
\(862\) 13.9084 24.0900i 0.473721 0.820509i
\(863\) 22.4738 + 38.9258i 0.765018 + 1.32505i 0.940237 + 0.340521i \(0.110603\pi\)
−0.175219 + 0.984530i \(0.556063\pi\)
\(864\) −6.13161 −0.208602
\(865\) 11.2101 19.4164i 0.381155 0.660179i
\(866\) 74.7451 2.53994
\(867\) 5.53740 0.188060
\(868\) 0 0
\(869\) 3.32196 0.112690
\(870\) −1.89018 −0.0640830
\(871\) −4.57554 + 7.92506i −0.155036 + 0.268531i
\(872\) 35.9633 1.21787
\(873\) −21.2949 36.8839i −0.720724 1.24833i
\(874\) 38.0922 65.9776i 1.28849 2.23173i
\(875\) −7.51959 + 13.0243i −0.254208 + 0.440302i
\(876\) −22.7579 −0.768917
\(877\) 21.3255 + 36.9369i 0.720112 + 1.24727i 0.960955 + 0.276706i \(0.0892429\pi\)
−0.240843 + 0.970564i \(0.577424\pi\)
\(878\) −14.2699 24.7162i −0.481587 0.834133i
\(879\) −11.4574 19.8447i −0.386447 0.669346i
\(880\) −0.370392 + 0.641538i −0.0124859 + 0.0216263i
\(881\) −4.45826 7.72193i −0.150203 0.260159i 0.781099 0.624407i \(-0.214659\pi\)
−0.931302 + 0.364248i \(0.881326\pi\)
\(882\) 17.7284 30.7065i 0.596947 1.03394i
\(883\) −47.0683 −1.58398 −0.791988 0.610537i \(-0.790954\pi\)
−0.791988 + 0.610537i \(0.790954\pi\)
\(884\) 27.6046 0.928443
\(885\) 30.1880 52.2872i 1.01476 1.75762i
\(886\) 5.44969 + 9.43914i 0.183086 + 0.317114i
\(887\) −1.57828 + 2.73367i −0.0529936 + 0.0917876i −0.891305 0.453404i \(-0.850210\pi\)
0.838312 + 0.545191i \(0.183543\pi\)
\(888\) 32.7588 + 56.7398i 1.09931 + 1.90406i
\(889\) −1.03083 1.78546i −0.0345731 0.0598823i
\(890\) 6.35501 + 11.0072i 0.213020 + 0.368962i
\(891\) 5.41954 0.181561
\(892\) 10.3314 17.8944i 0.345920 0.599150i
\(893\) −18.6368 + 32.2799i −0.623657 + 1.08021i
\(894\) 18.6640 + 32.3270i 0.624217 + 1.08118i
\(895\) −28.2089 −0.942920
\(896\) 15.2899 26.4829i 0.510800 0.884732i
\(897\) 34.3177 1.14583
\(898\) 36.8840 1.23083
\(899\) 0 0
\(900\) 14.3131 0.477105
\(901\) −25.1116 −0.836589
\(902\) −6.24182 + 10.8112i −0.207830 + 0.359972i
\(903\) −0.938824 −0.0312421
\(904\) −16.8954 29.2637i −0.561932 0.973295i
\(905\) 18.6648 32.3284i 0.620439 1.07463i
\(906\) −16.2079 + 28.0729i −0.538472 + 0.932661i
\(907\) 26.9632 0.895297 0.447649 0.894210i \(-0.352262\pi\)
0.447649 + 0.894210i \(0.352262\pi\)
\(908\) 21.6899 + 37.5680i 0.719804 + 1.24674i
\(909\) −12.7257 22.0415i −0.422084 0.731071i
\(910\) 8.75490 + 15.1639i 0.290222 + 0.502680i
\(911\) 2.53901 4.39769i 0.0841212 0.145702i −0.820895 0.571079i \(-0.806525\pi\)
0.905016 + 0.425377i \(0.139858\pi\)
\(912\) 2.38303 + 4.12753i 0.0789100 + 0.136676i
\(913\) −0.979560 + 1.69665i −0.0324187 + 0.0561508i
\(914\) −10.5171 −0.347876
\(915\) −49.8095 −1.64665
\(916\) 25.3971 43.9891i 0.839144 1.45344i
\(917\) 6.42382 + 11.1264i 0.212133 + 0.367425i
\(918\) −5.97976 + 10.3572i −0.197361 + 0.341840i
\(919\) 24.6385 + 42.6751i 0.812749 + 1.40772i 0.910933 + 0.412554i \(0.135363\pi\)
−0.0981848 + 0.995168i \(0.531304\pi\)
\(920\) 27.1823 + 47.0811i 0.896174 + 1.55222i
\(921\) 39.8351 + 68.9965i 1.31261 + 2.27351i
\(922\) 39.2072 1.29122
\(923\) 3.22791 5.59091i 0.106248 0.184027i
\(924\) 4.96754 8.60403i 0.163420 0.283052i
\(925\) 5.23597 + 9.06896i 0.172158 + 0.298186i
\(926\) −63.2905 −2.07986
\(927\) −9.68376 + 16.7728i −0.318056 + 0.550890i
\(928\) −0.668022 −0.0219289
\(929\) 39.9606 1.31107 0.655533 0.755167i \(-0.272444\pi\)
0.655533 + 0.755167i \(0.272444\pi\)
\(930\) 0 0
\(931\) 20.5649 0.673989
\(932\) 43.4245 1.42242
\(933\) 22.5208 39.0072i 0.737299 1.27704i
\(934\) −52.8666 −1.72985
\(935\) −4.01360 6.95176i −0.131259 0.227347i
\(936\) −10.0420 + 17.3932i −0.328232 + 0.568515i
\(937\) −22.5446 + 39.0485i −0.736502 + 1.27566i 0.217560 + 0.976047i \(0.430190\pi\)
−0.954061 + 0.299611i \(0.903143\pi\)
\(938\) 17.8409 0.582525
\(939\) −27.5488 47.7159i −0.899020 1.55715i
\(940\) −33.3780 57.8124i −1.08867 1.88563i
\(941\) 25.0962 + 43.4678i 0.818112 + 1.41701i 0.907072 + 0.420976i \(0.138312\pi\)
−0.0889605 + 0.996035i \(0.528354\pi\)
\(942\) −23.4534 + 40.6225i −0.764153 + 1.32355i
\(943\) 26.2457 + 45.4589i 0.854678 + 1.48034i
\(944\) −1.92039 + 3.32622i −0.0625035 + 0.108259i
\(945\) −4.73663 −0.154083
\(946\) 0.390207 0.0126867
\(947\) 15.1630 26.2630i 0.492730 0.853434i −0.507234 0.861808i \(-0.669332\pi\)
0.999965 + 0.00837391i \(0.00266553\pi\)
\(948\) 19.1390 + 33.1498i 0.621607 + 1.07666i
\(949\) 2.55203 4.42024i 0.0828423 0.143487i
\(950\) 6.64777 + 11.5143i 0.215682 + 0.373573i
\(951\) −1.29176 2.23740i −0.0418883 0.0725526i
\(952\) −10.7215 18.5702i −0.347486 0.601864i
\(953\) 35.4775 1.14923 0.574614 0.818425i \(-0.305152\pi\)
0.574614 + 0.818425i \(0.305152\pi\)
\(954\) 22.9272 39.7111i 0.742297 1.28570i
\(955\) 2.82442 4.89204i 0.0913961 0.158303i
\(956\) −38.9689 67.4962i −1.26035 2.18298i
\(957\) −0.240534 −0.00777536
\(958\) −10.4382 + 18.0794i −0.337242 + 0.584120i
\(959\) 26.3938 0.852299
\(960\) 81.0843 2.61698
\(961\) 0 0
\(962\) −36.8791 −1.18903
\(963\) 6.32153 0.203708
\(964\) 41.0799 71.1524i 1.32309 2.29167i
\(965\) −64.1211 −2.06413
\(966\) −33.4527 57.9418i −1.07632 1.86425i
\(967\) −17.7222 + 30.6957i −0.569906 + 0.987107i 0.426668 + 0.904408i \(0.359687\pi\)
−0.996575 + 0.0826987i \(0.973646\pi\)
\(968\) 15.9894 27.6944i 0.513918 0.890133i
\(969\) −51.6453 −1.65909
\(970\) 35.4271 + 61.3616i 1.13750 + 1.97020i
\(971\) 20.0486 + 34.7252i 0.643391 + 1.11439i 0.984671 + 0.174424i \(0.0558063\pi\)
−0.341280 + 0.939962i \(0.610860\pi\)
\(972\) 37.1261 + 64.3044i 1.19082 + 2.06256i
\(973\) 5.87875 10.1823i 0.188464 0.326429i
\(974\) −27.2550 47.2070i −0.873305 1.51261i
\(975\) −2.99453 + 5.18667i −0.0959016 + 0.166106i
\(976\) 3.16860 0.101424
\(977\) −38.6708 −1.23719 −0.618595 0.785710i \(-0.712298\pi\)
−0.618595 + 0.785710i \(0.712298\pi\)
\(978\) 50.0648 86.7148i 1.60090 2.77283i
\(979\) 0.808705 + 1.40072i 0.0258463 + 0.0447671i
\(980\) −18.4156 + 31.8968i −0.588265 + 1.01891i
\(981\) −20.3860 35.3096i −0.650874 1.12735i
\(982\) 10.6457 + 18.4389i 0.339717 + 0.588407i
\(983\) −10.7898 18.6885i −0.344141 0.596070i 0.641056 0.767494i \(-0.278497\pi\)
−0.985197 + 0.171424i \(0.945163\pi\)
\(984\) −57.3137 −1.82710
\(985\) 7.73987 13.4058i 0.246613 0.427146i
\(986\) −0.651478 + 1.12839i −0.0207473 + 0.0359354i
\(987\) 16.3669 + 28.3483i 0.520965 + 0.902338i
\(988\) −29.2359 −0.930116
\(989\) 0.820373 1.42093i 0.0260864 0.0451829i
\(990\) 14.6579 0.465858
\(991\) −46.8764 −1.48908 −0.744538 0.667580i \(-0.767330\pi\)
−0.744538 + 0.667580i \(0.767330\pi\)
\(992\) 0 0
\(993\) −67.8639 −2.15360
\(994\) −12.5862 −0.399211
\(995\) 5.70814 9.88680i 0.180960 0.313432i
\(996\) −22.5744 −0.715299
\(997\) −22.2695 38.5718i −0.705281 1.22158i −0.966590 0.256327i \(-0.917488\pi\)
0.261309 0.965255i \(-0.415846\pi\)
\(998\) 32.7830 56.7818i 1.03773 1.79740i
\(999\) 4.98814 8.63971i 0.157818 0.273348i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.i.439.8 16
31.2 even 5 961.2.g.n.547.2 16
31.3 odd 30 961.2.g.t.448.2 16
31.4 even 5 961.2.g.l.235.1 16
31.5 even 3 961.2.a.j.1.8 8
31.6 odd 6 961.2.c.j.521.8 16
31.7 even 15 961.2.g.j.338.1 16
31.8 even 5 961.2.g.j.816.1 16
31.9 even 15 961.2.d.n.374.1 16
31.10 even 15 961.2.d.q.531.4 16
31.11 odd 30 961.2.d.o.388.1 16
31.12 odd 30 961.2.g.s.844.2 16
31.13 odd 30 961.2.d.p.628.4 16
31.14 even 15 961.2.g.l.732.1 16
31.15 odd 10 961.2.g.s.846.2 16
31.16 even 5 961.2.g.m.846.2 16
31.17 odd 30 31.2.g.a.19.1 yes 16
31.18 even 15 961.2.d.q.628.4 16
31.19 even 15 961.2.g.m.844.2 16
31.20 even 15 961.2.d.n.388.1 16
31.21 odd 30 961.2.d.p.531.4 16
31.22 odd 30 961.2.d.o.374.1 16
31.23 odd 10 961.2.g.k.816.1 16
31.24 odd 30 961.2.g.k.338.1 16
31.25 even 3 inner 961.2.c.i.521.8 16
31.26 odd 6 961.2.a.i.1.8 8
31.27 odd 10 31.2.g.a.18.1 16
31.28 even 15 961.2.g.n.448.2 16
31.29 odd 10 961.2.g.t.547.2 16
31.30 odd 2 961.2.c.j.439.8 16
93.5 odd 6 8649.2.a.be.1.1 8
93.17 even 30 279.2.y.c.19.2 16
93.26 even 6 8649.2.a.bf.1.1 8
93.89 even 10 279.2.y.c.235.2 16
124.27 even 10 496.2.bg.c.49.2 16
124.79 even 30 496.2.bg.c.81.2 16
155.17 even 60 775.2.ck.a.174.4 32
155.27 even 20 775.2.ck.a.49.1 32
155.48 even 60 775.2.ck.a.174.1 32
155.58 even 20 775.2.ck.a.49.4 32
155.79 odd 30 775.2.bl.a.701.2 16
155.89 odd 10 775.2.bl.a.576.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.g.a.18.1 16 31.27 odd 10
31.2.g.a.19.1 yes 16 31.17 odd 30
279.2.y.c.19.2 16 93.17 even 30
279.2.y.c.235.2 16 93.89 even 10
496.2.bg.c.49.2 16 124.27 even 10
496.2.bg.c.81.2 16 124.79 even 30
775.2.bl.a.576.2 16 155.89 odd 10
775.2.bl.a.701.2 16 155.79 odd 30
775.2.ck.a.49.1 32 155.27 even 20
775.2.ck.a.49.4 32 155.58 even 20
775.2.ck.a.174.1 32 155.48 even 60
775.2.ck.a.174.4 32 155.17 even 60
961.2.a.i.1.8 8 31.26 odd 6
961.2.a.j.1.8 8 31.5 even 3
961.2.c.i.439.8 16 1.1 even 1 trivial
961.2.c.i.521.8 16 31.25 even 3 inner
961.2.c.j.439.8 16 31.30 odd 2
961.2.c.j.521.8 16 31.6 odd 6
961.2.d.n.374.1 16 31.9 even 15
961.2.d.n.388.1 16 31.20 even 15
961.2.d.o.374.1 16 31.22 odd 30
961.2.d.o.388.1 16 31.11 odd 30
961.2.d.p.531.4 16 31.21 odd 30
961.2.d.p.628.4 16 31.13 odd 30
961.2.d.q.531.4 16 31.10 even 15
961.2.d.q.628.4 16 31.18 even 15
961.2.g.j.338.1 16 31.7 even 15
961.2.g.j.816.1 16 31.8 even 5
961.2.g.k.338.1 16 31.24 odd 30
961.2.g.k.816.1 16 31.23 odd 10
961.2.g.l.235.1 16 31.4 even 5
961.2.g.l.732.1 16 31.14 even 15
961.2.g.m.844.2 16 31.19 even 15
961.2.g.m.846.2 16 31.16 even 5
961.2.g.n.448.2 16 31.28 even 15
961.2.g.n.547.2 16 31.2 even 5
961.2.g.s.844.2 16 31.12 odd 30
961.2.g.s.846.2 16 31.15 odd 10
961.2.g.t.448.2 16 31.3 odd 30
961.2.g.t.547.2 16 31.29 odd 10
8649.2.a.be.1.1 8 93.5 odd 6
8649.2.a.bf.1.1 8 93.26 even 6