Properties

Label 961.2.c
Level $961$
Weight $2$
Character orbit 961.c
Rep. character $\chi_{961}(439,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $126$
Newform subspaces $12$
Sturm bound $165$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 12 \)
Sturm bound: \(165\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(961, [\chi])\).

Total New Old
Modular forms 198 182 16
Cusp forms 134 126 8
Eisenstein series 64 56 8

Trace form

\( 126 q + 4 q^{2} - 2 q^{3} + 96 q^{4} + 2 q^{5} + 6 q^{6} + 2 q^{7} + 18 q^{8} - 35 q^{9} - 5 q^{10} - 2 q^{11} - 10 q^{12} - 2 q^{13} - 9 q^{14} + 4 q^{15} + 28 q^{16} - 6 q^{17} - 8 q^{18} + 6 q^{19} - q^{20}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(961, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
961.2.c.a 961.c 31.c $4$ $7.674$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 31.2.c.a \(-4\) \(-2\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{3})q^{2}+(-1-\beta _{1}-\beta _{2})q^{3}+\cdots\)
961.2.c.b 961.c 31.c $4$ $7.674$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 961.2.a.b \(-4\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{3}]$ \(q-q^{2}+(-2\beta _{1}-2\beta _{3})q^{3}-q^{4}+(2\beta _{1}+\cdots)q^{6}+\cdots\)
961.2.c.c 961.c 31.c $4$ $7.674$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 31.2.a.a \(2\) \(-2\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}-2\beta _{1}q^{3}+(-1-\beta _{2})q^{4}+\cdots\)
961.2.c.d 961.c 31.c $4$ $7.674$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 31.2.d.a \(2\) \(-2\) \(3\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-1-\beta _{3})q^{3}+(-1-\beta _{2}+\cdots)q^{4}+\cdots\)
961.2.c.e 961.c 31.c $4$ $7.674$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 31.2.a.a \(2\) \(2\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+2\beta _{1}q^{3}+(-1-\beta _{2})q^{4}+\cdots\)
961.2.c.f 961.c 31.c $4$ $7.674$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 31.2.d.a \(2\) \(2\) \(3\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(1+\beta _{3})q^{3}+(-1-\beta _{2})q^{4}+\cdots\)
961.2.c.g 961.c 31.c $6$ $7.674$ 6.0.2101707.2 \(\Q(\sqrt{-31}) \) 961.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{3}]$ \(q+\beta _{2}q^{2}+(2+\beta _{1})q^{4}+(-\beta _{1}+\beta _{4}+\cdots)q^{5}+\cdots\)
961.2.c.h 961.c 31.c $8$ $7.674$ 8.0.207360000.1 None 961.2.a.h \(12\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-\beta _{2})q^{2}-\beta _{1}q^{3}+(3-3\beta _{2})q^{4}+\cdots\)
961.2.c.i 961.c 31.c $16$ $7.674$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(4\) \(-3\) \(-3\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{5}q^{2}+(-1-\beta _{6}-\beta _{9}+\beta _{10}-\beta _{11}+\cdots)q^{3}+\cdots\)
961.2.c.j 961.c 31.c $16$ $7.674$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 31.2.g.a \(4\) \(3\) \(-3\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{5}q^{2}+(1+\beta _{6}+\beta _{9}-\beta _{10}+\beta _{11}+\cdots)q^{3}+\cdots\)
961.2.c.k 961.c 31.c $24$ $7.674$ None 961.2.a.k \(0\) \(0\) \(-8\) \(-8\) $\mathrm{SU}(2)[C_{3}]$
961.2.c.l 961.c 31.c $32$ $7.674$ None 961.2.a.l \(-16\) \(0\) \(16\) \(16\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(961, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(961, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)